Lefschetz pencils and divisors in moduli space

被引:31
作者
Smith, Ivan [1 ]
机构
[1] Univ Oxford New Coll, Oxford OX1 3BN, England
关键词
Lefschetz pencil; Lefschetz fibration; symplectic four-manifold; moduli space of curves;
D O I
10.2140/gt.2001.5.579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Lefschetz pencils on symplectic four-manifolds via the associated spheres in the moduli spaces of curves, and in particular their intersections with certain natural divisors. An invariant defined from such intersection numbers can distinguish manifolds with torsion first Chern class. We prove that pencils of large degree always give spheres which behave 'homologically' like rational curves; contrastingly, we give the first constructive example of a symplectic non-holomorphic Lefschetz pencil. We also prove that only finitely many values of signature or Euler characteristic are realised by manifolds admitting Lefschetz pencils of genus two curves.
引用
收藏
页码:579 / 608
页数:30
相关论文
共 27 条
[1]   THE PICARD-GROUPS OF THE MODULI SPACES OF CURVES [J].
ARBARELLO, E ;
CORNALBA, M .
TOPOLOGY, 1987, 26 (02) :153-171
[2]   Symplectic 4-manifolds as branched coverings of CP2 [J].
Auroux, D .
INVENTIONES MATHEMATICAE, 2000, 139 (03) :551-602
[3]  
AUROUX D, 2000, DEGREE DOUBLING FORM
[4]  
Barth W., 1984, COMPACT COMPLEX SURF
[5]  
Donaldson S K, 2000, ARXIVMATHSG0012067
[6]  
Donaldson SK, 1999, J DIFFER GEOM, V53, P205
[7]   Meyer's signature cocycle and hyperelliptic fibrations [J].
Endo, H .
MATHEMATISCHE ANNALEN, 2000, 316 (02) :237-257
[8]  
Fintushel R, 1999, COUNTEREXAMPLES SYMP
[9]  
Gompf R. E., 2001, TURKISH J MATH, V25, P43
[10]   THE 2ND HOMOLOGY GROUP OF THE MAPPING CLASS GROUP OF AN ORIENTABLE SURFACE [J].
HARER, J .
INVENTIONES MATHEMATICAE, 1983, 72 (02) :221-239