Flowable polymer electrolytes for lithium metal batteries

被引:55
作者
Aldalur, Itziar [1 ]
Martinez-Ibanez, Maria [1 ]
Krzton-Maziopa, Anna [2 ]
Piszcz, Michal [2 ]
Armand, Michel [1 ]
Zhang, Heng [1 ]
机构
[1] CIC Energigune, Parque Tecnol Alava,Albert Einstein 48, Minano 01510, Alava, Spain
[2] Warsaw Univ Technol, Fac Chem, Noakowskiego 3, PL-00664 Warsaw, Poland
关键词
Polymer electrolyte; Flowable polymer; Solid-state battery; Jeffamine; Lithium metal electrode; OXIDE); TEMPERATURE; CONDUCTIVITY; CHALLENGES; ANODES; CELL;
D O I
10.1016/j.jpowsour.2019.03.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid polymer electrolytes (SPEs) are currently attracting extensive interest as Li-ion conducting materials for building safe and high energy density rechargeable lithium metal batteries due to their low flammability and ease in process. The structural design of polymer matrices could effectively regulate the physicochemical and electrochemical properties of SPEs, thereby enhancing the performance of rechargeable all solid-state lithium metal batteries (ASSLMBs). Herein, we report a new type of flowable polymer electrolyte (FPE), containing a liquid-like polymer with highly conductive polyether side chains and sulfonimide lithium salts [i.e., lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI)]. The high amorphicity and segmental mobility of the liquid-like polymer matrices facilitate fast ionic transport, thus leading to the highest ionic conductivity reported (6.6 x 10(-4) S cm(-1) at 70 degrees C and 1.4 x 10(-4) S cm(-1) at 30 degrees C). The introduction of FPE as a buffer layer between Li metal (Li degrees) electrode and poly(ethylene oxide)-based SPE decreases the interfacial resistivity of Li degrees/electrolyte and improves remarkably cyclability and coulombic efficiency of the Li degrees parallel to LiFePO4 cell. These results suggest that the FPEs are promising candidates for lithium metal protection in ASSLMBs.
引用
收藏
页码:218 / 226
页数:9
相关论文
共 49 条
[1]   AMBIENT-TEMPERATURE RECHARGEABLE POLYMER-ELECTROLYTE BATTERIES [J].
ABRAHAM, KM ;
ALAMGIR, M .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :195-208
[2]   Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes [J].
Aldalur, Itziar ;
Martinez-Ibanez, Maria ;
Piszcz, Michal ;
Rodriguez-Martinez, Lide M. ;
Zhang, Heng ;
Armand, Michel .
JOURNAL OF POWER SOURCES, 2018, 383 :144-149
[3]   Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application [J].
Aldalur, Itziar ;
Zhang, Heng ;
Piszcz, Michal ;
Oteo, Uxue ;
Rodriguez-Martinez, Lide M. ;
Shanmukaraj, Devaraj ;
Rojo, Teofilo ;
Armand, Michel .
JOURNAL OF POWER SOURCES, 2017, 347 :37-46
[4]   Investigation of swelling phenomena in PEO-based polymer electrolytes - II. Chemical and electrochemical characterization [J].
Appetecchi, GB ;
Aihara, Y ;
Scrosati, B .
SOLID STATE IONICS, 2004, 170 (1-2) :63-72
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[7]   THE HISTORY OF POLYMER ELECTROLYTES [J].
ARMAND, M .
SOLID STATE IONICS, 1994, 69 (3-4) :309-319
[8]   POLYMER ELECTROLYTES [J].
ARMAND, MB .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1986, 16 :245-261
[9]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[10]   Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks [J].
Devaux, Didier ;
Lienafa, Livie ;
Beaudoin, Emmanuel ;
Maria, Sebastien ;
Phan, Trang N. T. ;
Gigmes, Didier ;
Giroud, Emmanuelle ;
Davidson, Patrick ;
Bouchet, Renaud .
ELECTROCHIMICA ACTA, 2018, 269 :250-261