Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems

被引:19
|
作者
Seslija, Marko [1 ]
Scherpen, Jacquelien M. A.
van der Schaft, Arjan [2 ]
机构
[1] Univ Groningen, Inst Technol Engn & Management, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, Netherlands
关键词
Port-Hamiltonian systems; Dirac structures; Distributed-parameter systems; Structure-preserving discretization; Discrete geometry;
D O I
10.1016/j.automatica.2013.11.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simplicial Dirac structures as finite analogues of the canonical Stokes Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input output finite-dimensional port-Hamiltonian systems that emulate the behavior of distributed-parameter port-Hamiltonian systems. This paper elaborates on the matrix representations of simplicial Dirac structures and the resulting port-Hamiltonian systems on simplicial manifolds. Employing these representations, we consider the existence of structural invariants and demonstrate how they pertain to the energy shaping of port-Hamiltonian systems on simplicial manifolds. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条
  • [41] STABILITY AND PASSIVITY FOR A CLASS OF DISTRIBUTED PORT-HAMILTONIAN NETWORKS
    Gernandt, Hannes
    Hinsen, Dorothea
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (06) : 2936 - 2962
  • [42] Dissipativity-based boundary control of linear distributed port-Hamiltonian systems
    Macchelli, Alessandro
    Califano, Federico
    AUTOMATICA, 2018, 95 : 54 - 62
  • [43] Exergetic port-Hamiltonian systems for multibody dynamics
    Lohmayer, Markus
    Capobianco, Giuseppe
    Leyendecker, Sigrid
    MULTIBODY SYSTEM DYNAMICS, 2024,
  • [44] Structure-preserving discretization of Maxwell's equations as a port-Hamiltonian
    Haine, Ghislain
    Matignon, Denis
    Monteghetti, Florian
    IFAC PAPERSONLINE, 2022, 55 (30): : 424 - 429
  • [45] Port-Hamiltonian systems with energy and power ports
    Krhac, Kaja
    Maschke, Bernhard
    van der Schaft, Arjan
    IFAC PAPERSONLINE, 2024, 58 (06): : 280 - 285
  • [46] Finite element hybridization of port-Hamiltonian systems
    Brugnoli, Andrea
    Rashad, Ramy
    Zhang, Yi
    Stramigioli, Stefano
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 498
  • [47] An irreversible port-Hamiltonian formulation of distributed diffusion processes
    Ramirez, Hector
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2016, 49 (24): : 46 - 51
  • [48] SINGULAR DISTRIBUTED-PARAMETER SYSTEMS
    TRZASKA, Z
    MARSZALEK, W
    IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1993, 140 (05): : 305 - 308
  • [49] Conditions on shifted passivity of port-Hamiltonian systems
    Monshizadeh, Nima
    Monshizadeh, Pooya
    Ortega, Romeo
    van der Schaft, Arjan
    SYSTEMS & CONTROL LETTERS, 2019, 123 : 55 - 61
  • [50] Linear Port-Hamiltonian Systems Are Generically Controllable
    Kirchhoff, Jonas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3220 - 3222