Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems

被引:19
|
作者
Seslija, Marko [1 ]
Scherpen, Jacquelien M. A.
van der Schaft, Arjan [2 ]
机构
[1] Univ Groningen, Inst Technol Engn & Management, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, Netherlands
关键词
Port-Hamiltonian systems; Dirac structures; Distributed-parameter systems; Structure-preserving discretization; Discrete geometry;
D O I
10.1016/j.automatica.2013.11.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simplicial Dirac structures as finite analogues of the canonical Stokes Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input output finite-dimensional port-Hamiltonian systems that emulate the behavior of distributed-parameter port-Hamiltonian systems. This paper elaborates on the matrix representations of simplicial Dirac structures and the resulting port-Hamiltonian systems on simplicial manifolds. Employing these representations, we consider the existence of structural invariants and demonstrate how they pertain to the energy shaping of port-Hamiltonian systems on simplicial manifolds. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条
  • [31] New insights in the geometry and interconnection of port-Hamiltonian systems
    Barbero-Linan, M.
    Cendra, H.
    Garcia-Torano Andres, E.
    Martin de Diego, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (37)
  • [32] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [33] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [34] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937
  • [35] A Case Study of Port-Hamiltonian Systems With a Moving Interface
    Kilian, Alexander
    Maschke, Bernhard
    Mironchenko, Andrii
    Wirth, Fabian
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1572 - 1577
  • [36] Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model
    Bendimerad-Hohl, Antoine
    Haine, Ghislain
    Lefevre, Laurent
    Matignon, Denis
    IFAC PAPERSONLINE, 2023, 56 (02): : 6789 - 6795
  • [37] Some notes on port-Hamiltonian systems on Banach spaces
    Reis, Timo
    IFAC PAPERSONLINE, 2021, 54 (19): : 223 - 229
  • [38] From discrete modeling to explicit FE models for port-Hamiltonian systems of conservation laws
    Kotyczka, Paul
    Thoma, Tobias
    IFAC PAPERSONLINE, 2022, 55 (30): : 412 - 417
  • [39] Explicit Port-Hamiltonian Formulation of Bond Graphs with Dependent Storages
    Pfeifer, Martin
    Caspart, Sven
    Muller, Charles
    Pfeiffer, Silja
    Krebs, Stefan
    Hohmann, Soeren
    IFAC PAPERSONLINE, 2020, 53 (02): : 5579 - 5585