Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems

被引:19
|
作者
Seslija, Marko [1 ]
Scherpen, Jacquelien M. A.
van der Schaft, Arjan [2 ]
机构
[1] Univ Groningen, Inst Technol Engn & Management, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, Netherlands
关键词
Port-Hamiltonian systems; Dirac structures; Distributed-parameter systems; Structure-preserving discretization; Discrete geometry;
D O I
10.1016/j.automatica.2013.11.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simplicial Dirac structures as finite analogues of the canonical Stokes Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input output finite-dimensional port-Hamiltonian systems that emulate the behavior of distributed-parameter port-Hamiltonian systems. This paper elaborates on the matrix representations of simplicial Dirac structures and the resulting port-Hamiltonian systems on simplicial manifolds. Employing these representations, we consider the existence of structural invariants and demonstrate how they pertain to the energy shaping of port-Hamiltonian systems on simplicial manifolds. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条
  • [21] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [22] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [23] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [24] Modeling, discretization and motion control of a flexible beam in the port-Hamiltonian framework
    Wang, M.
    Bestler, A.
    Kotyczka, P.
    IFAC PAPERSONLINE, 2017, 50 (01): : 6799 - 6806
  • [25] Remarks on the geometric structure of port-Hamiltonian systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2024, 58 (06): : 274 - 279
  • [26] Observer-based boundary control of distributed port-Hamiltonian systems
    Toledo, Jesus
    Wu, Yongxin
    Ramirez, Hector
    Le Gorrec, Yann
    AUTOMATICA, 2020, 120 (120)
  • [27] Distributed port-Hamiltonian modelling for irreversible processes
    Zhou, W.
    Hamroun, B.
    Couenne, F.
    Le Gorrec, Y.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2017, 23 (01) : 3 - 22
  • [28] Structure-preserving discretization of port-Hamiltonian plate models
    Brugnoli, Andrea
    Alazard, Daniel
    Pommier-Budinger, Valerie
    Matignon, Denis
    IFAC PAPERSONLINE, 2021, 54 (09): : 359 - 364
  • [29] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142
  • [30] A Port-Hamiltonian formulation of linear thermoelasticity and its mixed finite element discretization
    Brugnoli, A.
    Alazard, D.
    Pommier-Budinger, V.
    Matignon, D.
    JOURNAL OF THERMAL STRESSES, 2021, 44 (06) : 643 - 661