Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets

被引:106
作者
Schied, Alexander [1 ]
Schoeneborn, Torsten [2 ,3 ]
机构
[1] Cornell Univ, Sch ORIE, Ithaca, NY 14853 USA
[2] Tech Univ Berlin, Deutsch Bank, Quantitat Prod Lab, D-10178 Berlin, Germany
[3] Man Investments Ltd Sugar Quay, AHL Res, London EC3R 6DU, England
关键词
Optimal liquidation; Optimal trade execution; Aggressive in the money; Passive in the money; Liquidity risk; Market impact; Absolute risk aversion; Hamilton-Jacobi-Bellman equation; Nonlinear partial differential equation; Sensitivity analysis; PRICE; DECISION;
D O I
10.1007/s00780-008-0082-8
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider the infinite-horizon optimal portfolio liquidation problem for a von Neumann-Morgenstern investor in the liquidity model of Almgren (Appl. Math. Finance 10:1-18, 2003). Using a stochastic control approach, we characterize the value function and the optimal strategy as classical solutions of nonlinear parabolic partial differential equations. We furthermore analyze the sensitivities of the value function and the optimal strategy with respect to the various model parameters. In particular, we find that the optimal strategy is aggressive or passive in-the-money, respectively, if and only if the utility function displays increasing or decreasing risk aversion. Surprisingly, only few further monotonicity relations exist with respect to the other parameters. We point out in particular that the speed by which the remaining asset position is sold can be decreasing in the size of the position but increasing in the liquidity price impact.
引用
收藏
页码:181 / 204
页数:24
相关论文
共 28 条
[1]  
Abramowitz P., 2006, I INVES ALPHA MAG, V6, P41
[2]  
ALFONSI A, 2007, OPTIMAL EXECUTION ST
[3]  
Almgren R., 1999, Risk, V12, P61
[4]  
ALMGREN R, 2007, ALGORITHMIC TRADING, V3
[5]  
Almgren R.F., 2003, APPL MATH FINANCE, V10, P1, DOI DOI 10.1080/135048602100056
[6]  
[Anonymous], OPTIMAL BASKET LIQUI
[7]  
[Anonymous], 1968, Translation of Mathematical Monographs
[8]  
Bertsimas Dimitris, 1998, J. Financial Mark, V1, P1, DOI DOI 10.1016/S1386-4181(97)00012-8
[9]   Fluctuations and response in financial markets: the subtle nature of 'random' price changes [J].
Bouchaud, JP ;
Gefen, Y ;
Potters, M ;
Wyart, M .
QUANTITATIVE FINANCE, 2004, 4 (02) :176-190
[10]   Episodic liquidity crises: Cooperative and predatory trading [J].
Carlin, Bruce Ian ;
Lobo, Miguel Sousa ;
Viswanathan, S. .
JOURNAL OF FINANCE, 2007, 62 (05) :2235-2274