Dirac quasinormal modes in spherically symmetric regular black holes

被引:54
作者
Li, Jin [1 ]
Ma, Hong [1 ]
Lin, Kai [2 ]
机构
[1] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 06期
基金
中国国家自然科学基金; 巴西圣保罗研究基金会;
关键词
WKB APPROACH;
D O I
10.1103/PhysRevD.88.064001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the WKB approximation, massless and massive Dirac quasinormal modes (QNMs) are studied in spherically symmetric regular spacetimes. We analyze the relationships between QNM frequencies and the parameters (angular momentum number l, magnetic monopole charge beta, and the mass of the field m) and discuss the extreme charge of magnetic monopole beta(e) for spherically symmetric regular black holes. Furthermore, we apply an expansion method to expand QNMs in inverse powers of L = l + 1/2 and confirm good precision with l > n. Finally, we improve the traditional finite difference method to be available in the massive Dirac case and illuminate the dynamical evolution of the massive Dirac field.
引用
收藏
页数:10
相关论文
共 32 条
[1]   A NUMERICALLY ACCURATE INVESTIGATION OF BLACK-HOLE NORMAL-MODES [J].
ANDERSSON, N .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 439 (1905) :47-58
[2]   The Bardeen model as a nonlinear magnetic monopole [J].
Ayón-Beato, E ;
García, A .
PHYSICS LETTERS B, 2000, 493 (1-2) :149-152
[3]   Regular black hole in general relativity coupled to nonlinear electrodynamics [J].
Ayon-Beato, E ;
Garcia, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (23) :5056-5059
[4]  
Bardeen J, 1968, P INT C GR5
[5]   Regular black holes in quadratic gravity [J].
Berej, W ;
Matyjasek, J ;
Tryniecki, D ;
Woronowicz, M .
GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (05) :885-906
[6]   QUASI-NORMAL OSCILLATIONS OF A SCHWARZSCHILD BLACK-HOLE [J].
BLOME, HJ ;
MASHHOON, B .
PHYSICS LETTERS A, 1984, 100 (05) :231-234
[7]   INTERACTION OF NEUTRINOS AND GRAVITATIONAL FIELDS [J].
BRILL, DR ;
WHEELER, JA .
REVIEWS OF MODERN PHYSICS, 1957, 29 (03) :465-479
[8]   Geodesic stability, Lyapunov exponents, and quasinormal modes [J].
Cardoso, Vitor ;
Miranda, Alex S. ;
Berti, Emanuele ;
Witek, Helvi ;
Zanchin, Vilson T. .
PHYSICAL REVIEW D, 2009, 79 (06)
[9]   QUASI-NORMAL MODES OF SCHWARZSCHILD BLACK-HOLE [J].
CHANDRASEKHAR, S ;
DETWEILER, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1975, 344 (1639) :441-452
[10]   Split fermion quasinormal modes [J].
Cho, H. T. ;
Cornell, A. S. ;
Doukas, Jason ;
Naylor, Wade .
PHYSICAL REVIEW D, 2007, 75 (10)