Stability of symplectic finite-difference time-domain methods

被引:13
|
作者
Saitoh, I [1 ]
Takahashi, N
机构
[1] Hitachi Ltd, Cent Res Lab, Tokyo 1858601, Japan
[2] Okayama Univ, Dept Elect & Elect Engn, Okayama 7008530, Japan
关键词
FDTD method; helicity Hamiltonian; Maxwell equations; stability; symplectic method;
D O I
10.1109/20.996173
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Problems with slowly varying electromagnetic fields may be difficult to treat using finite-difference time-domain (FDTD) method. FDTD method was extended to symplectic FDTD methods to resolve the problems. Stability of schemes is a key to the efficient calculation of these problems. The stability of newly developed symplectic FDTD methods is examined. The developed symplectic FDTD methods show better stability than the conventional FDTD method.
引用
收藏
页码:665 / 668
页数:4
相关论文
共 50 条
  • [21] CONFORMAL HYBRID FINITE-DIFFERENCE TIME-DOMAIN AND FINITE-VOLUME TIME-DOMAIN
    YEE, KS
    CHEN, JS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1994, 42 (10) : 1450 - 1454
  • [22] Least Squares Finite-Difference Time-Domain
    de Oliveira, Rodrigo M. S.
    Paiva, Rodrigo R.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) : 6111 - 6115
  • [23] Refractive index adaptive gridding for finite-difference time-domain methods
    Körner, TO
    Fichtner, W
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1999, 12 (1-2) : 143 - 155
  • [24] Refractive index adaptive gridding for finite-difference time-domain methods
    Integrated Systems Laboratory, ETH Zentrum, Swiss Fed. Institute of Technology, 8092 Zürich, Switzerland
    Int J Numer Modell Electron Networks Devices Fields, 1 (143-155):
  • [25] Finite-difference and pseudospectral time-domain methods for subsurface radar applications
    Liu, QH
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 990 - 993
  • [26] Quantum Finite-Difference Time-Domain Scheme
    Na, Dong-Yeop
    Chew, Weng Cho
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 62 - 63
  • [27] Grid interpolation at material boundaries in finite-difference time-domain methods
    Korner, TO
    Fichtner, W
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1998, 19 (05) : 368 - 370
  • [28] Generalized finite-difference time-domain algorithm
    Gao, Benqing
    Gandhi, Om.P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1993, 21 (03): : 31 - 36
  • [29] A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    HUANG, WP
    CHU, ST
    CHAUDHURI, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) : 803 - 806
  • [30] Finite-difference time-domain on the Cell/BE processor
    Xu, Meilian
    Thulasiraman, Parimala
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 3025 - 3032