A Stochastic Traffic Cellular Automata with Controlled Randomness

被引:0
|
作者
Angeline, Lorita [1 ]
Choong, Mei Yeen [1 ]
Chua, Bih Lii [1 ]
Chin, Renee Ka Yin [1 ]
Teo, Kenneth Tze Kin [1 ]
机构
[1] Univ Malaysia Sabah, Fac Engn, Modelling Simulat & Comp Lab, Kota Kinabalu, Malaysia
来源
2017 IEEE 2ND INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS) | 2017年
关键词
Cellular Automata; TCA; NaSchr model; traffic jam; traffic waves;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow pattern appears to be random and makes it more challenging to model and analyse. This paper aims to present a traffic model based on NaSchr model, but with a revised rule for randomisation. User can trigger a manual braking on certain cars and its effect on traffic flow can be observed and analysed. The traffic cellular automata model with manual braking mode is applied to a single lane with open boundary conditions. A new variable 'bad-agent' is introduced to represent the tailgater on road that cause the inevitable brake-tapping on drivers behind them, thus the emergence of traffic waves. The simulation results show that when cars come too close to each other at high speed, certainly it creates noise. This noise is the traffic waves that propagate backward.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 50 条
  • [41] In traffic flow, cellular automata = kinematic waves
    Daganzo, CF
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2006, 40 (05) : 396 - 403
  • [42] Parallel Implementations of Cellular Automata for Traffic Models
    Marzolla, Moreno
    CELLULAR AUTOMATA (ACRI 2018), 2018, 11115 : 503 - 512
  • [43] Metastable states in cellular automata for traffic flow
    R. Barlovic
    L. Santen
    A. Schadschneider
    M. Schreckenberg
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 5 : 793 - 800
  • [44] Cellular Automata Model for Work Zone Traffic
    Meng, Qiang
    Weng, Jinxian
    TRANSPORTATION RESEARCH RECORD, 2010, (2188) : 131 - 139
  • [45] Metastable states in cellular automata for traffic flow
    Barlovic, R
    Santen, L
    Schadschneider, A
    Schreckenberg, M
    EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03): : 793 - 800
  • [46] Intrinsic Simulations between Stochastic Cellular Automata
    Arrighi, Pablo
    Schabanel, Nicolas
    Theyssier, Guillaume
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 208 - 224
  • [47] Stochastic analysis of cellular automata and the voter model
    Mühlenbein, H
    Höns, R
    CELLULAR AUTOMATA, PROCEEDINGS, 2002, 2493 : 92 - 103
  • [48] Affinity Classification Problem by Stochastic Cellular Automata
    Bhattacharjee, Kamalika
    Paul, Subrata
    Das, Sukanta
    COMPLEX SYSTEMS, 2023, 32 (03): : 271 - 288
  • [49] Stochastic comparisons for general probabilistic cellular automata
    López, FJ
    Sanz, G
    STATISTICS & PROBABILITY LETTERS, 2000, 46 (04) : 401 - 410
  • [50] Nondeterministic and Stochastic Cellular Automata and Virus Dynamics
    Burkhead, E. G.
    Hawkins, J. M.
    JOURNAL OF CELLULAR AUTOMATA, 2018, 13 (1-2) : 103 - 119