Social media contents based sentiment analysis and prediction system

被引:69
作者
Yoo, SoYeop [1 ]
Song, Jeln [1 ,2 ]
Jeong, OkRan [1 ]
机构
[1] Gachon Univ, 1342 Seongnam Daero, Seongnam Si, Gyeonggi Do, South Korea
[2] ZUM Internet Corp, Banpo Daero 3, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Social media; Sentiment analysis; Sentiment prediction; Sentimental trajectory;
D O I
10.1016/j.eswa.2018.03.055
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the influence and social ripple effect of social media sites, diverse studies are in progress to analyze the contents generated by users. Numerous contents generated in real time contain information about social issues and events such as natural disasters. In particular, users show not only information about the events that occurred but also their sentiments. In this paper, we propose Polaris, a system for analyzing and predicting users' sentimental trajectories for events analyzed in real time out of the massive social media contents, and show the results of preliminary validation work that we have done. We show both trajectory analysis and sentiment analysis so that users can obtain the insight at a glance. Also, we increased the accuracy in sentiment analysis and prediction by making use of the latest deep-learning technique. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 111
页数:10
相关论文
共 23 条
[1]   AsterixDB: A Scalable, Open Source BDMS [J].
Alsubaiee, Sattam ;
Altowim, Yasser ;
Altwaijry, Hotham ;
Behm, Alexander ;
Borkar, Vinayak ;
Bu, Yingyi ;
Carey, Michael ;
Cetindil, Inci ;
Cheelangi, Madhusudan ;
Faraaz, Khurram ;
Gabrielova, Eugenia ;
Grover, Raman ;
Heilbron, Zachary ;
Kim, Young-Seok ;
Chen Li ;
Li, Guangqiang ;
Ok, Ji Mahn ;
Onose, Nicola ;
Pirzadeh, Pouria ;
Tsotras, Vassilis ;
Vernica, Rares ;
Wen, Jian ;
Westmann, Till .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (14) :1905-1916
[2]  
[Anonymous], 2017, IEEE transactions on neural networks and learning systems, DOI DOI 10.1109/TNNLS.2016.2582924
[3]  
[Anonymous], 2014, C EMPIRICAL METHODS
[4]  
[Anonymous], 2011, P ACM SIGKDD INT C K, DOI DOI 10.1145/2020408.2020579
[5]  
[Anonymous], 2014, ACM Sigkdd Explorations Newsletter, DOI DOI 10.1145/2641190.2641195
[6]  
Bishop Christopher M, 2016, Pattern recognition and machine learning
[7]  
Do HJ., 2015, P 29 PAC AS C LANG I, P142
[8]   A Survey on Trajectory Data Mining: Techniques and Applications [J].
Feng, Zhenni ;
Zhu, Yanmin .
IEEE ACCESS, 2016, 4 :2056-2067
[9]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[10]  
Hu B, 2012, 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P368, DOI 10.1109/ASONAM.2012.67