BIFURCATION ANALYSIS OF A DELAYED PREDATOR-PREY MODEL OF PREY MIGRATION AND PREDATOR SWITCHING

被引:10
|
作者
Xu, Changjin [1 ,2 ]
Tang, Xianhua [2 ]
Liao, Maoxin [2 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Peoples R China
[2] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
predator-prey model; migration; switching; stability; Hopf bifurcation; GLOBAL STABILITY; HOPF-BIFURCATION; PERIODIC-SOLUTIONS; EPIDEMIC MODEL; DISPERSAL; SYSTEM; PERMANENCE; DIFFUSION; DYNAMICS;
D O I
10.4134/BKMS.2013.50.2.353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a class of delayed predator-prey models of prey migration and predator switching is considered. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.
引用
收藏
页码:353 / 373
页数:21
相关论文
共 50 条
  • [1] Dynamics of a delayed predator-prey model with predator migration
    Chen, Yuming
    Zhang, Fengqin
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) : 1400 - 1412
  • [2] Stability and Bifurcation Analysis of a Delayed Discrete Predator-Prey Model
    Yousef, A. M.
    Salman, S. M.
    Elsadany, A. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (09):
  • [3] Bifurcation Analysis and Optimal Harvesting of a Delayed Predator-Prey Model
    Mouofo, P. Tchinda
    Demasse, R. Djidjou
    Tewa, J. J.
    Aziz-Alaoui, M. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (01):
  • [4] Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey
    Hu, Guang-Ping
    Li, Xiao-Ling
    CHAOS SOLITONS & FRACTALS, 2012, 45 (03) : 229 - 237
  • [5] Bifurcation of a predator-prey model with disease in the prey
    Liu, Xuanliang
    Wang, Chaoyang
    NONLINEAR DYNAMICS, 2010, 62 (04) : 841 - 850
  • [6] Bifurcation Analysis of a Predator-Prey Model with Alternative Prey and Prey Refuges
    Cui, Wenzhe
    Zhao, Yulin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (02):
  • [7] Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting
    Meng, Xin-You
    Meng, Fan-Li
    AIMS MATHEMATICS, 2021, 6 (06): : 5695 - 5719
  • [8] Bifurcation analysis of the predator-prey model with the Allee effect in the predator
    Sen, Deeptajyoti
    Ghorai, Saktipada
    Banerjee, Malay
    Morozov, Andrew
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 84 (1-2)
  • [9] Bifurcation analysis of a delayed predator-prey fishery model with prey reserve in frequency domain
    Xu, Changjin
    World Academy of Science, Engineering and Technology, 2011, 80 : 792 - 798
  • [10] Bifurcation analysis in a predator-prey model for the effect of delay in prey
    Wang, Qiubao
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (04)