Combining Three-Dimensional Modeling with Artificial Intelligence to Increase Specificity and Precision in Peptide-MHC Binding Predictions

被引:8
作者
Aranha, Michelle P. [1 ,2 ]
Jewel, Yead S. M. [1 ,2 ]
Beckman, Robert A. [3 ,4 ,5 ,6 ]
Weiner, Louis M. [5 ,6 ]
Mitchell, Julie C. [7 ]
Parks, Jerry M. [2 ,7 ]
Smith, Jeremy C. [1 ,2 ]
机构
[1] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37916 USA
[2] Oak Ridge Natl Lab, Ctr Mol Biophys, Oak Ridge, TN 37830 USA
[3] Georgetown Univ, Innovat Ctr Biomed Informat, Med Ctr, Washington, DC 20007 USA
[4] Georgetown Univ, Dept Biostat Bioinformat & Biomath, Med Ctr, Washington, DC 20007 USA
[5] Georgetown Univ, Dept Oncol, Med Ctr, Washington, DC 20057 USA
[6] Georgetown Univ, Lombardi Comprehens Canc Ctr, Med Ctr, Washington, DC 20057 USA
[7] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA
基金
美国国家卫生研究院;
关键词
CLASS-I MOLECULES; ROSETTA FLEXPEPDOCK; PROTEIN-STRUCTURE; AFFINITY; EPITOPES; SEQUENCE; DATABASE; IMMUNOGENICITY; SENSITIVITY; SYFPEITHI;
D O I
10.4049/jimmunol.1900918
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The reliable prediction of the affinity of candidate peptides for the MHC is important for predicting their potential antigenicity and thus influences medical applications, such as decisions on their inclusion in T cell-based vaccines. In this study, we present a rapid, predictive computational approach that combines a popular, sequence-based artificial neural network method, NetMHCpan 4.0, with three-dimensional structural modeling. We find that the ensembles of bound peptide conformations generated by the programs MODELLER and Rosetta FlexPepDock are less variable in geometry for strong binders than for low-affinity peptides. In tests on 1271 peptide sequences for which the experimental dissociation constants of binding to the well-characterized murine MHC allele H-2D(b) are known, by applying thresholds for geometric fluctuations the structure-based approach in a standalone manner drastically improves the statistical specificity, reducing the number of false positives. Furthermore, filtering candidates generated with NetMHCpan 4.0 with the structure-based predictor led to an increase in the positive predictive value (PPV) of the peptides correctly predicted to bind very strongly (i.e., K-d < 100 nM) from 40 to 52% (p = 0.027). The combined method also significantly improved the PPV when tested on five human alleles, including some with limited data for training. Overall, an average increase of 10% in the PPV was found over the standalone sequence-based method. The combined method should be useful in the rapid design of effective T cell-based vaccines.
引用
收藏
页码:1962 / +
页数:21
相关论文
共 71 条
  • [1] Alam N, 2017, METHODS MOL BIOL, V1561, P139, DOI 10.1007/978-1-4939-6798-8_9
  • [2] Structure-Based Identification of HDAC8 Non-histone Substrates
    Alam, Nawsad
    Zimmerman, Lior
    Wolfson, Noah A.
    Joseph, Caleb G.
    Fierke, Carol A.
    Schueler-Furman, Ora
    [J]. STRUCTURE, 2016, 24 (03) : 458 - 468
  • [3] The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design
    Alford, Rebecca F.
    Leaver-Fay, Andrew
    Jeliazkov, Jeliazko R.
    O'Meara, Matthew J.
    DiMaio, Frank P.
    Park, Hahnbeom
    Shapovalov, Maxim V.
    Renfrew, P. Douglas
    Mulligan, Vikram K.
    Kappel, Kalli
    Labonte, Jason W.
    Pacella, Michael S.
    Bonneau, Richard
    Bradley, Philip
    Dunbrack, Roland L., Jr.
    Das, Rhiju
    Baker, David
    Kuhlman, Brian
    Kortemme, Tanja
    Gray, Jeffrey J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) : 3031 - 3048
  • [4] A structure-based approach for prediction of MHC-binding peptides
    Altuvia, Y
    Margalit, H
    [J]. METHODS, 2004, 34 (04) : 454 - 459
  • [5] Gapped sequence alignment using artificial neural networks: application to the MHC class I system
    Andreatta, Massimo
    Nielsen, Morten
    [J]. BIOINFORMATICS, 2016, 32 (04) : 511 - 517
  • [6] DynaPred: A structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations
    Antes, Iris
    Siu, Shirley W. I.
    Lengauer, Thomas
    [J]. BIOINFORMATICS, 2006, 22 (14) : E16 - E24
  • [7] Prediction of peptide binding to MHC using machine learning with sequence and structure-based feature sets
    Aranha, Michelle P.
    Spooner, Catherine
    Demerdash, Omar
    Czejdo, Bogdan
    Smith, Jeremy C.
    Mitchell, Julie C.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2020, 1864 (04):
  • [8] MULTISTAGE PROOFREADING IN DNA-REPLICATION
    BECKMAN, RA
    LOEB, LA
    [J]. QUARTERLY REVIEWS OF BIOPHYSICS, 1993, 26 (03) : 225 - 331
  • [9] An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes
    Bjerregaard, Anne-Mette
    Nielsen, Morten
    Jurtz, Vanessa
    Barra, Carolina M.
    Hadrup, Sine Reker
    Szallasi, Zoltan
    Eklund, Aron Charles
    [J]. FRONTIERS IN IMMUNOLOGY, 2017, 8
  • [10] MuPeXI: prediction of neo-epitopes from tumor sequencing data
    Bjerregaard, Anne-Mette
    Nielsen, Morten
    Hadrup, Sine Reker
    Szallasi, Zoltan
    Eklund, Aron Charles
    [J]. CANCER IMMUNOLOGY IMMUNOTHERAPY, 2017, 66 (09) : 1123 - 1130