A vanishing theorem for characteristic classes of odd-dimensional manifold bundles

被引:23
作者
Ebert, Johannes [1 ]
机构
[1] Univ Munster, Math Inst, D-48149 Munster, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2013年 / 684卷
关键词
SPECTRAL ASYMMETRY; K-THEORY; HOMOLOGY; HOMOTOPY; INDEX;
D O I
10.1515/crelle-2012-0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how the Atiyah-Singer family index theorem for both usual and self-adjoint elliptic operators fits naturally into the framework of the Madsen-Tillmann-Weiss spectra. Our main theorem concerns bundles of odd-dimensional manifolds. Using completely functional-analytic methods, we show that for any smooth proper oriented fibre bundle E -> X with odd-dimensional fibres, the family index ind (B) is an element of K-1 (X) of the odd signature operator is trivial. The Atiyah-Singer theorem allows us to draw a topological conclusion: the generalized Madsen-Tillmann-Weiss map alpha : B Diff(+) (M2m-1) -> Omega(infinity) MTSO (2m - 1) kills the Hirzebruch L-class in rational cohomology. If m = 2, this means that alpha induces the zero map in rational cohomology. In particular, the three-dimensional analogue of the Madsen-Weiss theorem is wrong. For 3-manifolds M, we also prove the triviality of alpha in mod p cohomology in many cases. We show an appropriate version of these results for manifold bundles with boundary.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 40 条
[1]  
Adams J. F., 1961, P CAMBRIDGE PHILOS S, V57, P189, DOI 10.1017/S0305004100035052
[2]   CHERN CHARACTERS REVISITED [J].
ADAMS, JF .
ILLINOIS JOURNAL OF MATHEMATICS, 1973, 17 (02) :333-336
[4]  
[Anonymous], 1995, Chicago Lectures in Mathematics
[5]  
[Anonymous], 1963, Topology, DOI DOI 10.1016/0040-9383(63)90031-4
[6]  
Atiyah M., 2004, Ukr. Math. Bull, V1, P291
[7]  
Atiyah M.F., 1969, PUBL MATH I HAUTES T, V37, P5
[8]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[9]  
Atiyah M.F., 1969, Global Analysis (Papers in Honor of K. Kodaira), P73
[10]   INDEX OF ELLIPTIC OPERATORS .4. [J].
ATIYAH, MF ;
SINGER, IM .
ANNALS OF MATHEMATICS, 1971, 93 (01) :119-&