Leslie's prey-predator model in discrete time

被引:4
作者
Rozikov, U. A. [1 ]
Shoyimardonov, S. K. [2 ]
机构
[1] VI Romanovskiy Inst Math, 81 Mirzo Ulugbek St, Tashkent 100125, Uzbekistan
[2] Tashkent Univ Informat Technol, Dept Higher Math, Tashkent, Uzbekistan
关键词
Population; Leslie model; fixed points; prey-predator; discrete time; QUADRATIC STOCHASTIC OPERATORS; GOWER;
D O I
10.1142/S1793524520500539
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the Leslie's prey-predator model with discrete time. This model is given by a nonlinear evolution operator depending on five parameters. We show that this operator has two fixed points and define type of each fixed point depending on the parameters. Finding two invariant sets of the evolution operator, we study the dynamical systems generated by the operator on each invariant set. Depending on the parameters, we classify the dynamics between a predator and a prey of the Leslie's model.
引用
收藏
页数:25
相关论文
共 26 条
[1]  
Alligood K., 1997, INTRO DYNAMICAL SYST, P612
[2]  
Arardonel H. D. I., 1991, J NONLINEAR SCI, V1, P175
[3]  
Arrowsmith D. K., 1994, INTRO DYNAMICAL SYST, P432
[4]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[5]   Study of a Leslie-Gower-type tritrophic population model [J].
Aziz-Alaoui, MA .
CHAOS SOLITONS & FRACTALS, 2002, 14 (08) :1275-1293
[6]  
Britton N F., 2003, Essential Mathematical Biology, DOI DOI 10.1007/978-1-4471-0049-2
[7]   Asymptotic dynamics of a modified discrete Leslie-Gower competition system [J].
Chow, Yunshyong ;
Jang, Sophia R. -J. .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (06)
[8]  
Devaney R. L., 2003, INTRO CHAOTIC DYNAMI, P360
[9]   On the computation of Lyapunov exponents for continuous dynamical systems [J].
Dieci, L ;
Russell, RD ;
VanVleck, ES .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :402-423
[10]   QUADRATIC STOCHASTIC OPERATORS AND PROCESSES: RESULTS AND OPEN PROBLEMS [J].
Ganikhodzhaev, Rasul ;
Mukhamedov, Farrukh ;
Rozikov, Utkir .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 14 (02) :279-335