A Novel Scheme Adaptive Hybrid Dislocated Synchronization for Two Identical and Different Memristor Chaotic Oscillator Systems with Uncertain Parameters

被引:4
作者
Chen, Jie [1 ,2 ]
Sun, Junwei [1 ]
Chi, Ming [1 ]
Cheng, Xin-Ming [3 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Automat, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[3] Cent S Univ, Sch Informat Sci & Engn, Changsha 410012, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
MODIFIED PROJECTIVE SYNCHRONIZATION; CONTROLLER; DESIGN; PHASE;
D O I
10.1155/2014/675840
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The drive system can synchronize with the response system by the scaling factor in the traditional projective synchronization. This paper proposes a novel adaptive hybrid dislocated synchronization with uncertain parameters scheme for chaos synchronization using the Lyapunov stability theory. The drive system is synchronized by the sum of hybrid dislocated state variables for the response system. By designing effective hybrid dislocated adaptive controller and hybrid dislocated adaptive law of the parameters estimation, we investigate the synchronization of two identical memristor chaotic oscillator systems and two different memristor chaotic oscillator systems with uncertain parameters. Finally, the numerical simulation examples are provided to show the effectiveness of our method.
引用
收藏
页数:10
相关论文
共 40 条
[11]   Time scale synchronization of chaotic oscillators [J].
Hramov, AE ;
Koronovskii, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 206 (3-4) :252-264
[12]   Synchronizing spatiotemporal chaos in coupled nonlinear oscillators [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 77 (11) :2206-2209
[13]   On the use of chaotic synchronization for secure communication [J].
Koronovskii, A. A. ;
Moskalenko, O. I. ;
Hramov, A. E. .
PHYSICS-USPEKHI, 2009, 52 (12) :1213-1238
[14]   Hidden data transmission using generalized synchronization in the presence of noise [J].
Koronovskii, A. A. ;
Moskalenko, O. I. ;
Hramov, A. E. .
TECHNICAL PHYSICS, 2010, 55 (04) :435-441
[15]   Modified projective synchronization of chaotic system [J].
Li, Guo-Hui .
CHAOS SOLITONS & FRACTALS, 2007, 32 (05) :1786-1790
[16]   Delay-range-dependent synchronization criterion for Lur'e systems with delay feedback control [J].
Li, Tao ;
Yu, Jianjiang ;
Wang, Zhao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1796-1803
[17]   Projective synchronization in three-dimensional chaotic systems [J].
Mainieri, R ;
Rehacek, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3042-3045
[18]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[19]  
Park J. H., 2007, CHAOS SOLITON FRACT, V34, P1152
[20]  
Park JH, 2005, INT J NONLIN SCI NUM, V6, P305