A Novel Scheme Adaptive Hybrid Dislocated Synchronization for Two Identical and Different Memristor Chaotic Oscillator Systems with Uncertain Parameters

被引:4
作者
Chen, Jie [1 ,2 ]
Sun, Junwei [1 ]
Chi, Ming [1 ]
Cheng, Xin-Ming [3 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Automat, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[3] Cent S Univ, Sch Informat Sci & Engn, Changsha 410012, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
MODIFIED PROJECTIVE SYNCHRONIZATION; CONTROLLER; DESIGN; PHASE;
D O I
10.1155/2014/675840
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The drive system can synchronize with the response system by the scaling factor in the traditional projective synchronization. This paper proposes a novel adaptive hybrid dislocated synchronization with uncertain parameters scheme for chaos synchronization using the Lyapunov stability theory. The drive system is synchronized by the sum of hybrid dislocated state variables for the response system. By designing effective hybrid dislocated adaptive controller and hybrid dislocated adaptive law of the parameters estimation, we investigate the synchronization of two identical memristor chaotic oscillator systems and two different memristor chaotic oscillator systems with uncertain parameters. Finally, the numerical simulation examples are provided to show the effectiveness of our method.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]  
[Anonymous], ADV SCI ENG MED
[3]   Transient chaos in smooth memristor oscillator [J].
Bao Bo-Cheng ;
Liu Zhong ;
Xu Jian-Ping .
CHINESE PHYSICS B, 2010, 19 (03)
[4]  
BHOWMICK SK, 2012, CHAOS, V22
[5]   Chaos synchronization between two different chaotic systems via nonlinear feedback control [J].
Chen, Heng-Hui ;
Sheu, Geeng-Jen ;
Lin, Yung-Lung ;
Chen, Chaio-Shiung .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (12) :4393-4401
[6]   Robust adaptive anti-synchronization of two different hyperchaotic systems with external uncertainties [J].
Fu, Guiyuan ;
Li, Zhongshen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) :395-401
[7]   Synchronization of unidirectional coupled chaotic systems via partial stability [J].
Ge, ZM ;
Chen, YS .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :101-111
[8]   Design of coupling for synchronization in time-delayed systems [J].
Ghosh, Dibakar ;
Grosu, Ioan ;
Dana, Syamal K. .
CHAOS, 2012, 22 (03)
[9]   Generalized synchronization of chaotic systems: An auxiliary system approach via matrix measure [J].
He, Wangli ;
Cao, Jinde .
CHAOS, 2009, 19 (01)
[10]   Phase and anti-phase synchronization of two chaotic systems by using active control [J].
Ho, MC ;
Hung, YC ;
Chou, CH .
PHYSICS LETTERS A, 2002, 296 (01) :43-48