Temperature sensitivity of InGaAs quantum-dot lasers grown by MOCVD

被引:12
作者
Kim, NH [1 ]
Park, JH
Mawst, LJ
Kuech, TF
Kanskar, M
机构
[1] Univ Wisconsin, Reed Ctr Photon, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[3] Alfalight Inc, Madison, WI 53704 USA
关键词
characteristic temperature coefficient; epitaxial growth; material gain; quantum dots (QDs); semiconductor lasers;
D O I
10.1109/LPT.2006.872283
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Temperature-dependent cavity length studies have been performed on multiple stack strain compensated InGaAs quantum-dot (QD) active region broad stripe laser structures grown by metal-organic chemical vapor deposition. The characteristic temperature coefficients of the threshold current density (T-0) and external differential quantum efficiency (T-1) were calculated from variable temperature measurements. The correlation of the T-0, T-1 values and the extracted values of the characteristic temperature coefficients of the transparency current density, material gain, injection efficiency, and internal loss (T-tr, T-g0, T-eta inj, T-alpha i) from the temperature-dependent study is discussed. The T-1 values are higher than 400 K for five-stack QD laser structures, comparable values to conventional quantum-well (QW) laser structures. T-0 values are lower than 100 K. Extracted material gain parameters are found to increase with increasing temperature for the three-stack QD structure, and are nearly temperature independent for the five-stack structure, different to that observed in InGaAs QW lasers.
引用
收藏
页码:989 / 991
页数:3
相关论文
共 11 条
[1]   MULTIDIMENSIONAL QUANTUM WELL LASER AND TEMPERATURE-DEPENDENCE OF ITS THRESHOLD CURRENT [J].
ARAKAWA, Y ;
SAKAKI, H .
APPLIED PHYSICS LETTERS, 1982, 40 (11) :939-941
[2]   Critical barrier thickness for the formation of InGaAs/GaAs quantum dots [J].
Gutiérrez, M ;
Hopkinson, M ;
Liu, HY ;
Tartakovskii, AI ;
Herrera, M ;
González, D ;
García, R .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2005, 25 (5-8) :798-803
[3]   Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1-xPx -: art. no. 093518 [J].
Kim, NH ;
Ramamurthy, P ;
Mawst, LJ ;
Kuech, TF ;
Modak, P ;
Goodnough, TJ ;
Forbes, DV ;
Kanskar, M .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (09)
[4]   Highly efficient GaInAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers [J].
Klopf, F ;
Reithmaier, JP ;
Forchel, A .
APPLIED PHYSICS LETTERS, 2000, 77 (10) :1419-1421
[5]   Correlation between the gain profile and the temperature-induced shift in wavelength of quantum-dot lasers [J].
Klopf, F ;
Deubert, S ;
Reithmaier, JP ;
Forchel, A .
APPLIED PHYSICS LETTERS, 2002, 81 (02) :217-219
[6]   InGaAs quantum dots grown with GaP strain compensation layers [J].
Lever, P ;
Tan, HH ;
Jagadish, C .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5710-5714
[7]   The role of Auger recombination in InAs 1.3-/μm quantum-dot lasers investigated using high hydrostatic pressure [J].
Marko, IP ;
Andreev, AD ;
Adams, AR ;
Krebs, R ;
Reithmaier, JP ;
Forchel, A .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (05) :1300-1307
[8]   Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers [J].
Matthews, DR ;
Summers, HD ;
Smowton, PM ;
Hopkinson, M .
APPLIED PHYSICS LETTERS, 2002, 81 (26) :4904-4906
[9]   Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers [J].
Sellin, RL ;
Ribbat, C ;
Grundmann, M ;
Ledentsov, NN ;
Bimberg, D .
APPLIED PHYSICS LETTERS, 2001, 78 (09) :1207-1209
[10]   Temperature analysis and characteristics of highly strained InGaAs-GaAsP-GaAs (λ > 1.17 μm) quantum-well lasers [J].
Tansu, N ;
Chang, YL ;
Takeuchi, T ;
Bour, DP ;
Corzine, SW ;
Tan, MRT ;
Mawst, LJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :640-651