ON THE DYNAMICS AND THE GEOMETRY OF THE ISHII SYSTEM

被引:1
|
作者
Tudoran, Ramona A. [1 ]
机构
[1] Vasile Goldis Coll Arad, Dept Math, Arad 310158, Romania
关键词
Hamiltonian systems; Ishii system; stability theory;
D O I
10.1142/S0219887812200174
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we analyze from the Poisson dynamics and geometry point of view the Ishii dynamical system.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Dynamics, geometry and solar sails
    Farres, Ariadna
    Jorba, Angel
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (05): : 1245 - 1264
  • [2] NEW ASPECTS ON THE GEOMETRY AND DYNAMICS OF QUADRATIC HAMILTONIAN SYSTEMS ON (so(3))*
    Daniasa, Cora
    Girban, Anania
    Tudoran, Razvan M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (08) : 1695 - 1721
  • [3] Phase-space geometry and reaction dynamics near index 2 saddles
    Ezra, Gregory S.
    Wiggins, Stephen
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
  • [4] Chaotic Dynamics in Generalized Rabinovich System
    Zhang, Fuchen
    Zhou, Ping
    Chen, Xiusu
    Chen, Rui
    Mu, Chunlai
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (03):
  • [5] Wisdom system: Dynamics in the adiabatic approximation
    Neishtadt, AI
    Sidorenko, VV
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2004, 90 (3-4) : 307 - 330
  • [6] Wisdom system: Dynamics in the adiabatic approximation
    A. I. Neishtadt
    V. V. Sidorenko
    Celestial Mechanics and Dynamical Astronomy, 2004, 90 : 307 - 330
  • [7] Geometry of escape and transition dynamics in the presence of dissipative and gyroscopic forces in two degree of freedom systems
    Zhong, Jun
    Ross, Shane D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
  • [8] SOLITON DYNAMICS FOR THE SCHRODINGER-NEWTON SYSTEM
    D'Avenia, Pietro
    Squassina, Marco
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (03) : 553 - 572
  • [9] Escape dynamics in a binary system of interacting galaxies
    Zotos, Euaggelos E.
    NEW ASTRONOMY, 2016, 42 : 10 - 23
  • [10] CHAOTIC DYNAMICS IN A PERIODICALLY PERTURBED LIENARD SYSTEM
    Papini, Duccio
    Villari, Gabriele
    Zanolin, Fabio
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (11-12) : 595 - 614