Experimental Determination of Ramsey Numbers

被引:70
作者
Bian, Zhengbing [1 ]
Chudak, Fabian [1 ]
Macready, William G. [1 ]
Clark, Lane [2 ]
Gaitan, Frank [3 ]
机构
[1] D Wave Syst Inc, Burnaby, BC V5C 6G9, Canada
[2] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[3] Lab Phys Sci, College Pk, MD 20740 USA
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
10.1103/PhysRevLett.111.130505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ramsey theory is a highly active research area in mathematics that studies the emergence of order in large disordered structures. Ramsey numbers mark the threshold at which order first appears and are extremely difficult to calculate due to their explosive rate of growth. Recently, an algorithm that can be implemented using adiabatic quantum evolution has been proposed that calculates the two-color Ramsey numbers R(m, n). Here we present results of an experimental implementation of this algorithm and show that it correctly determines the Ramsey numbers R(3, 3) and R(m, 2) for 4 <= m <= 8. The R(8, 2) computation used 84 qubits of which 28 were computational qubits. This computation is the largest experimental implementation of a scientifically meaningful adiabatic evolution algorithm that has been done to date.
引用
收藏
页数:6
相关论文
共 14 条
  • [1] [Anonymous], ARXIV13055837
  • [2] [Anonymous], RAMSEY THEORY
  • [3] [Anonymous], 2013, Modern graph theory
  • [4] Experimental signature of programmable quantum annealing
    Boixo, Sergio
    Albash, Tameem
    Spedalieri, Federico M.
    Chancellor, Nicholas
    Lidar, Daniel A.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [5] Farhi E., ARXIVQUANTPH0001106
  • [6] Ramsey Numbers and Adiabatic Quantum Computing
    Gaitan, Frank
    Clark, Lane
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (01)
  • [7] Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor
    Harris, R.
    Johnson, M. W.
    Lanting, T.
    Berkley, A. J.
    Johansson, J.
    Bunyk, P.
    Tolkacheva, E.
    Ladizinsky, E.
    Ladizinsky, N.
    Oh, T.
    Cioata, F.
    Perminov, I.
    Spear, P.
    Enderud, C.
    Rich, C.
    Uchaikin, S.
    Thom, M. C.
    Chapple, E. M.
    Wang, J.
    Wilson, B.
    Amin, M. H. S.
    Dickson, N.
    Karimi, K.
    Macready, B.
    Truncik, C. J. S.
    Rose, G.
    [J]. PHYSICAL REVIEW B, 2010, 82 (02)
  • [8] Experimental demonstration of a robust and scalable flux qubit
    Harris, R.
    Johansson, J.
    Berkley, A. J.
    Johnson, M. W.
    Lanting, T.
    Han, Siyuan
    Bunyk, P.
    Ladizinsky, E.
    Oh, T.
    Perminov, I.
    Tolkacheva, E.
    Uchaikin, S.
    Chapple, E. M.
    Enderud, C.
    Rich, C.
    Thom, M.
    Wang, J.
    Wilson, B.
    Rose, G.
    [J]. PHYSICAL REVIEW B, 2010, 81 (13):
  • [9] Compound Josephson-junction coupler for flux qubits with minimal crosstalk
    Harris, R.
    Lanting, T.
    Berkley, A. J.
    Johansson, J.
    Johnson, M. W.
    Bunyk, P.
    Ladizinsky, E.
    Ladizinsky, N.
    Oh, T.
    Han, S.
    [J]. PHYSICAL REVIEW B, 2009, 80 (05):
  • [10] Quantum annealing with manufactured spins
    Johnson, M. W.
    Amin, M. H. S.
    Gildert, S.
    Lanting, T.
    Hamze, F.
    Dickson, N.
    Harris, R.
    Berkley, A. J.
    Johansson, J.
    Bunyk, P.
    Chapple, E. M.
    Enderud, C.
    Hilton, J. P.
    Karimi, K.
    Ladizinsky, E.
    Ladizinsky, N.
    Oh, T.
    Perminov, I.
    Rich, C.
    Thom, M. C.
    Tolkacheva, E.
    Truncik, C. J. S.
    Uchaikin, S.
    Wang, J.
    Wilson, B.
    Rose, G.
    [J]. NATURE, 2011, 473 (7346) : 194 - 198