Investigation of Self-Heating Effects in Vacuum Gate Dielectric Gate-all-Around Vertically Stacked Silicon Nanowire Field Effect Transistors

被引:16
作者
Su, Yali [1 ]
Lai, Junhua [2 ]
Sun, Li [2 ]
机构
[1] Xian Shiyou Univ, Sch Mech Engn, Xian 710065, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Microelect, Xian 710049, Peoples R China
基金
美国国家科学基金会;
关键词
Logic gates; Field effect transistors; Gallium arsenide; Thermal conductivity; Conductivity; Dielectrics; Heating systems; Gate-all-around (GAA) silicon nanowire (SiNW) field effect transistor (FET); multiple heat sources; self-heating effects; thermal conductivity; FINFET; SCATTERING; DESIGN; MODEL; PERFORMANCE; CAPACITANCE; MOSFETS; SOI;
D O I
10.1109/TED.2020.3017452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The self-heating effects in vacuum gate dielectric gate-all-around field effect transistors (GAA FETs) with vertically stacked 4-nm silicon nanowire (SiNW) channels are investigated by 3-D TCAD simulation. The cross-sectional dimension-dependent thermal conductivity model of the SiNW is proposed for the precise numerical simulation of self-heating effects based on the temperature-dependent thermal conductivity of the bulk silicon. The thermal conductivity model which was verified by published data indicates that thermal conductivity of 4-nm SiNW is greatly reduced to below 10 W/mK due to the pronounced phonon boundary scattering. Simulation results shows that the vacuum gate dielectric devices undergo more severe self-heating effects than the solid gate dielectric GAA SiNW FETs, resulting in more serious performance degradation. Multiple heat sources generated by the three-stacked SiNWs make heat generation and diffusion more difficult. An effective method is proposed to suppress the self-heating effects by increasing the spacing of the gas gap within in a certain range and the around ambient gas pressure.
引用
收藏
页码:4085 / 4091
页数:7
相关论文
共 45 条
[1]  
[Anonymous], SENT DEV US GUID VER
[2]   Layout Design Correlated With Self-Heating Effect in Stacked Nanosheet Transistors [J].
Cai, Linlin ;
Chen, Wangyong ;
Du, Gang ;
Zhang, Xing ;
Liu, Xiaoyan .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (06) :2647-2653
[3]   Thermal contact resistance across nanoscale silicon dioxide and silicon interface [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
[4]   ESD Protection Diodes in Bulk Si Gate-All-Around Vertically Stacked Horizontal Nanowire Technology [J].
Chen, Shih-Hung ;
Hellings, Geert ;
Linten, Dimitri ;
Mertens, Hans ;
Mocuta, Anda ;
Horiguchi, Naoto .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2019, 19 (01) :112-119
[5]   Thermal SPICE Modeling of FinFET and BEOL Considering Frequency-Dependent Transient Response, 3-D Heat Flow, Boundary/Alloy Scattering, and Interfacial Thermal Resistance [J].
Chung, Chia-Che ;
Lin, H. H. ;
Wan, W. K. ;
Yang, M. -T. ;
Liu, C. W. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (06) :2710-2714
[6]   Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires [J].
Dames, C ;
Chen, G .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (02) :682-693
[7]   An improved electron and hole mobility model for general purpose device simulation [J].
Darwish, MN ;
Lentz, JL ;
Pinto, MR ;
Zeitzoff, PM ;
Krutsick, TJ ;
Vuong, HH .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44 (09) :1529-1538
[8]   Limitations on Lateral Nanowire Scaling Beyond 7-nm Node [J].
Das, Uttam Kumar ;
Garcia Bardon, M. ;
Jang, D. ;
Eneman, G. ;
Schuddinck, P. ;
Yakimets, D. ;
Raghavan, P. ;
Groeseneken, Guido .
IEEE ELECTRON DEVICE LETTERS, 2017, 38 (01) :9-11
[9]   Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET [J].
Espineira, G. ;
Nagy, D. ;
Indalecio, G. ;
Garcia-Loureiro, A. J. ;
Kalna, K. ;
Seoane, N. .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (04) :510-513
[10]   Compact Modeling of Drain Current, Charges, and Capacitances in Long-Channel Gate-All-Around Negative Capacitance MFIS Transistor [J].
Gaidhane, Amol D. ;
Pahwa, Girish ;
Verma, Amit ;
Chauhan, Yogesh Singh .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (05) :2024-2032