THE IMAGES OF MULTILINEAR POLYNOMIALS EVALUATED ON 3 x 3 MATRICES

被引:28
作者
Kanel-Belov, Alexey [1 ]
Malev, Sergey [1 ]
Rowen, Louis [1 ]
机构
[1] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Noncommutative polynomial; image; multilinear; matrices; WORD MAPS;
D O I
10.1090/proc/12478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a multilinear polynomial in several noncommuting variables, with coefficients in an algebraically closed field K of arbitrary characteristic. In this paper we classify the possible images of p evaluated on 3 x 3 matrices. The image is one of the following: {0}, the set of scalar matrices, a (Zariski-) dense subset of sl(3)(K), the matrices of trace 0, a dense subset of M-3(K), the set of 3-scalar matrices (i.e., matrices having eigenvalues (beta, beta epsilon, beta epsilon(2)) where epsilon is a cube root of 1), or the set of scalars plus 3-scalar matrices.
引用
收藏
页码:7 / 19
页数:13
相关论文
共 18 条
[1]  
Albert A.A., 1957, Mich. Math. J., V4, P1
[2]   Word equations in simple groups and polynomial equations in simple algebras [J].
Kanel-Belov A. ;
Kunyavskii B. ;
Plotkin E. .
Vestnik St. Petersburg University: Mathematics, 2013, 46 (1) :3-13
[3]  
Bresar M, 2009, MATH RES LETT, V16, P605
[4]   ON RANGES OF POLYNOMIALS IN FINITE MATRIX-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (02) :293-302
[5]  
Cox David, 2007, UNDERGRADUATE TEXTS
[6]   INVARIANTS OF SEVERAL MATRICES [J].
DONKIN, S .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :389-401
[7]  
Kanel-Belov A., 2013, J PURE APPL AL UNPUB
[8]  
Kanel-Belov Alexei, 2005, RES NOTES MATH, V9
[9]   THE IMAGES OF NON-COMMUTATIVE POLYNOMIALS EVALUATED ON 2 x 2 MATRICES [J].
Kanel-Belov, Alexey ;
Malev, Sergey ;
Rowen, Louis .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) :465-478
[10]  
Kulyamin V.V., 2000, THESIS MOSCOW LOMONO