On a class of locally conformally flat manifolds

被引:33
|
作者
Chang, SYA
Hang, FB
Yang, PC
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
D O I
10.1155/S1073792804132133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:185 / 209
页数:25
相关论文
共 50 条
  • [41] Locally Conformally Flat Doubly Twisted Product Complex Finsler Manifolds
    Xiao, Wei
    He, Yong
    Li, Shuwen
    Ni, Qihui
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [42] On locally conformally flat manifolds with finite total Q-curvature
    Lu, Zhiqin
    Wang, Yi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (04)
  • [43] ON LOCALLY CONFORMALLY FLAT WEAKLY-EINSTEIN FOUR-MANIFOLDS
    Haji-Badali, Ali
    Zaeim, Amirhesam
    Atashpeykar, Parvane
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (03): : 73 - 86
  • [44] A sphere theorem on locally conformally flat even-dimensional manifolds
    Giovanni Catino
    Zindine Djadli
    Cheikh Birahim Ndiaye
    Manuscripta Mathematica, 2011, 136 : 237 - 247
  • [45] Exact Solutions of Einstein Field Equation in Locally Conformally Flat Manifolds
    Levi Rosa Adriano
    Ilton Ferreira de Menezes
    Mauricio Donizetti Pieterzack
    Romildo da Silva Pina
    Results in Mathematics, 2021, 76
  • [46] LOCAL HARNACK ESTIMATE FOR YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS
    Fang, Shouwen
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (04) : 545 - 552
  • [47] THE YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS WITH POSITIVE RICCI CURVATURE
    CHOW, B
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) : 1003 - 1014
  • [48] ON LOCALLY CONFORMALLY FLAT WEAKLY-EINSTEIN FOUR-MANIFOLDS
    Haji-Badali, Ali
    Zaeim, Amirhesam
    Atashpeykar, Parvane
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (03): : 73 - 86
  • [49] Boundaries of Locally Conformally Flat Manifolds in Dimensions 4k
    Moroianu, Sergiu
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (01) : 329 - 342
  • [50] On locally conformally flat manifolds with finite total Q-curvature
    Zhiqin Lu
    Yi Wang
    Calculus of Variations and Partial Differential Equations, 2017, 56