Domains with non-compact automorphism group: A survey

被引:67
作者
Isaev, AV [1 ]
Krantz, SG
机构
[1] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
关键词
automorphism groups; holomorphic classification; domains in complex space;
D O I
10.1006/aima.1998.1821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey results arising from the study of domains in C-n with non-compact automorphism group. Beginning with a well-known characterization of the unit ball, we develop ideas toward a consideration of weakly pseudoconvex (and even non-pseudoconvex) domains with particular emphasis on characterizations of iii smoothly bounded domains with non-compact automorphism group and (ii) the Levi geometry of boundary orbit accumulation points. Particular attention will be paid to results derived in the past ten years. (C) 1999 Academic Press.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 88 条
[1]  
[Anonymous], ENCY MATH SCI
[2]  
[Anonymous], COMMUNICATION
[3]   BOUNDED DOMAINS WITH PRESCRIBED GROUP OF AUTOMORPHISMS [J].
BEDFORD, E ;
DADOK, J .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (04) :561-572
[4]   CONVEX DOMAINS WITH NONCOMPACT AUTOMORPHISM-GROUPS [J].
BEDFORD, E ;
PINCHUK, SI .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 82 (01) :1-20
[5]  
Bedford E., 1991, J. Geom. Anal, V1, P165, DOI 10.1007/BF02921302
[6]  
BEDFORD E, 1999, INDIANA U MATH J, V47, P149
[7]  
BEDFORD E, 1989, MATH USSR SB, V63, P141
[8]  
BELL S, 1987, LECT NOTES MATH, V1268, P29
[9]   WEAKLY PSEUDOCONVEX DOMAINS WITH NON-COMPACT AUTOMORPHISM-GROUPS [J].
BELL, S .
MATHEMATISCHE ANNALEN, 1988, 280 (03) :403-408
[10]   BIHOLOMORPHIC-MAPPINGS AND THE DELTABAR-PROBLEM [J].
BELL, SR .
ANNALS OF MATHEMATICS, 1981, 114 (01) :103-113