p21(Cip1/Waf1) disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex

被引:124
作者
Chen, JJ [1 ]
Chen, S [1 ]
Saha, P [1 ]
Dutta, A [1 ]
机构
[1] HARVARD UNIV,SCH MED,BRIGHAM & WOMENS HOSP,DEPT PATHOL,DIV MOL ONCOL,BOSTON,MA 02115
关键词
cell cycle; maturation factor I; DNA repair;
D O I
10.1073/pnas.93.21.11597
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a K-d of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable K-d (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.
引用
收藏
页码:11597 / 11602
页数:6
相关论文
共 41 条
[1]   A YEAST GENE REQUIRED FOR DNA-REPLICATION ENCODES A PROTEIN WITH HOMOLOGY TO DNA HELICASES [J].
BUDD, ME ;
CAMPBELL, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7642-7646
[2]  
CAMPBELL JL, 1993, J BIOL CHEM, V268, P25261
[3]   A 39 amino acid fragment of the cell cycle regulator p21 is sufficient to bind PCNA and partially inhibit DNA replication in vivo [J].
Chen, JJ ;
Peters, R ;
Saha, P ;
Lee, P ;
Theodoras, A ;
Pagano, M ;
Wagner, G ;
Dutta, A .
NUCLEIC ACIDS RESEARCH, 1996, 24 (09) :1727-1733
[4]   SEPARATE DOMAINS OF P21 INVOLVED IN THE INHIBITION OF CDK KINASE AND PCNA [J].
CHEN, JJ ;
JACKSON, PK ;
KIRSCHNER, MW ;
DUTTA, A .
NATURE, 1995, 374 (6520) :386-388
[5]   INHIBITION OF DNA-REPLICATION FACTOR RPA BY P53 [J].
DUTTA, A ;
RUPPERT, JM ;
ASTER, JC ;
WINCHESTER, E .
NATURE, 1993, 365 (6441) :79-82
[6]   CDC2 FAMILY KINASES PHOSPHORYLATE A HUMAN CELL-DNA REPLICATION FACTOR, RPA, AND ACTIVATE DNA-REPLICATION [J].
DUTTA, A ;
STILLMAN, B .
EMBO JOURNAL, 1992, 11 (06) :2189-2199
[7]  
ELDEIRY WS, 1994, CANCER RES, V54, P1169
[8]   A NOVEL GENETIC SYSTEM TO DETECT PROTEIN PROTEIN INTERACTIONS [J].
FIELDS, S ;
SONG, OK .
NATURE, 1989, 340 (6230) :245-246
[9]   IDENTIFICATION OF REPLICATION FACTOR-C FROM SACCHAROMYCES-CEREVISIAE - A COMPONENT OF THE LEADING-STRAND DNA-REPLICATION COMPLEX [J].
FIEN, K ;
STILLMAN, B .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (01) :155-163
[10]   CDK-INTERACTING PROTEIN-1 DIRECTLY BINDS WITH PROLIFERATING CELL NUCLEAR ANTIGEN AND INHIBITS DNA-REPLICATION CATALYZED BY THE DNA-POLYMERASE-DELTA HOLOENZYME [J].
FLORESROZAS, H ;
KELMAN, Z ;
DEAN, FB ;
PAN, ZQ ;
HARPER, PW ;
ELLEDGE, SJ ;
ODONNELL, M ;
HURWITZ, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (18) :8655-8659