Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

被引:91
作者
Birkner, Nancy [1 ,2 ,3 ]
Nayeri, Sara [5 ]
Pashaei, Babak [5 ]
Najafpour, Mohammad Mahdi [5 ,6 ]
Casey, William H. [3 ,4 ]
Navrotsky, Alexandra [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA
[2] Univ Calif Davis, Nanomat Environm Agr & Technol Organized Re, Davis, CA 95616 USA
[3] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
[4] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA
[5] Inst Adv Studies Basic Sci, Dept Chem, Zanjan 4513766731, Iran
[6] Inst Adv Studies Basic Sci, Ctr Climate Change & Global Warming, Zanjan 4513766731, Iran
基金
美国国家科学基金会;
关键词
nanomaterials; thermochemistry; OXYGEN EVOLUTION; ARTIFICIAL PHOTOSYNTHESIS; SURFACE ENTHALPY; PHOTOSYSTEM-II; METAL-OXIDES; ADSORPTION; SIZE; THERMODYNAMICS; CALORIMETRY; HAUSMANNITE;
D O I
10.1073/pnas.1306623110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.
引用
收藏
页码:8801 / 8806
页数:6
相关论文
共 42 条
[1]  
Birkner N, 2009, THESIS U NEVADA LAS
[2]   Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite [J].
Birkner, Nancy ;
Navrotsky, Alexandra .
AMERICAN MINERALOGIST, 2012, 97 (8-9) :1291-1298
[3]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[4]   Analysis of Anhydrous and Hydrated Surface Energies of gamma-Al2O3 by Water Adsorption Microcalorimetry [J].
Castro, Ricardo H. R. ;
Quach, Dat V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (46) :24726-24733
[5]   TRANSFORMATION OF HAUSMANNITE INTO BIRNESSITE IN ALKALINE MEDIA [J].
CORNELL, RM ;
GIOVANOLI, R .
CLAYS AND CLAY MINERALS, 1988, 36 (03) :249-257
[6]   Development of Bioinspired Mn4O4-Cubane Water Oxidation Catalysts: Lessons from Photosynthesis [J].
Dismukes, G. Charles ;
Brimblecombe, Robin ;
Felton, Greg A. N. ;
Pryadun, Ruslan S. ;
Sheats, John E. ;
Spiccia, Leone ;
Swiegers, Gerhard F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (12) :1935-1943
[7]  
Drits VA, 1998, AM MINERAL, V83, P97
[8]  
Essington ME., 2003, Soil and Water Chemistry: An Integrative Approach, P86
[9]   Architecture of the photosynthetic oxygen-evolving center [J].
Ferreira, KN ;
Iverson, TM ;
Maghlaoui, K ;
Barber, J ;
Iwata, S .
SCIENCE, 2004, 303 (5665) :1831-1838
[10]   Structure of nanocrystalline phyllomanganates produced by freshwater fungi [J].
Grangeon, Sylvain ;
Lanson, Bruno ;
Miyata, Naoyuki ;
Tani, Yukinori ;
Manceau, Alain .
AMERICAN MINERALOGIST, 2010, 95 (11-12) :1608-1616