Amine/oxide hybrid carbon dioxide adsorbents prepared via impregnation of low molecular weight polymeric amines into porous oxide supports are among the most promising solid adsorbents developed for postcombustion CO2 capture or CO2 extraction from ambient air. The oxidative stability of adsorbents prepared by impregnation of poly(ethylenimine) (PEI) or poly(allylamine) (PAA) into mesoporous gamma-alumina under humid oxidation conditions is evaluated in this work. The PEI-based adsorbents, which contain primary, secondary, and tertiary amines, are shown to degrade drastically at elevated temperatures (110 degrees C) and in high oxygen concentrations (21%, akin to air), with these effects reduced by both reductions in temperature (70 degrees C) and oxygen concentration (5%, akin to flue gas). The oxidation behavior of PEI-based adsorbents supported on alumina is qualitatively similar to past work on silica-supported PEI adsorbents. In contrast, the alumina-supported PAA adsorbents that contain only primary amines show significantly improved oxidative stability, losing only 10% or less of their original CO2 capacity after prolonged oxidative treatment under a variety of conditions. Analysis of the fresh and thermally treated samples by Fourier transform (FT) IR, FT-Raman, and C-13 NMR spectroscopies demonstrates the clear formation of carbonyl functionalities over the oxidized PEI-based adsorbents, whereas no significant changes in the spectra for PAA samples are observed after oxidative treatments. The collected data demonstrate that secondary-amine-free, primary-amine-rich polymers such as PAA may be used to formulate supported amine adsorbents with improved oxidative stability compared to adsorbents based on PEI, which is used ubiquitously in the field today.