Effect of titanium ion implantation and deposition on hydrogenation behavior of Zr-1Nb alloy

被引:18
作者
Kashkarov, E. B. [1 ]
Nikitenkov, N. N. [1 ]
Sutygina, A. N. [1 ]
Syrtanov, M. S. [1 ]
Vilkhivskaya, O. V. [1 ,2 ]
Pryamushko, T. S. [1 ]
Kudiiarov, V. N. [1 ]
Volesky, L. [3 ]
机构
[1] Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia
[2] Troitsk Inst Innovat & Fus Res, Troitsk 142190, Russia
[3] Tech Univ Liberec, Inst Nanomat Adv Technol & Innovat, Liberec 46117, Czech Republic
基金
俄罗斯基础研究基金会;
关键词
Zirconium; Titanium; Ion implantation; Deposition; Hydrogenation; Hydrogen absorption; Optical emission spectroscopy; WT-PERCENT NB; SURFACE MODIFICATION; VACUUM-ARC; CORROSION BEHAVIOR; HYDRIDE FORMATION; ZIRCONIUM ALLOYS; FORCE MICROSCOPY; PLASMA; OXIDATION; METALS;
D O I
10.1016/j.surfcoat.2016.07.111
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In order to study the effect of titanium ion implantation and deposition on hydrogenation behavior of Zr-1Nb alloy, the samples were subjected to plasma immersion implantation and deposition (PIII&D) of titanium ions at the bias voltage of 0.5-1.5 kV using a filtered metal vapor vacuum arc source. The crystalline structure, surface morphology and depth distributions of elements in the surface layer of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow-discharge optical emission spectroscopy (GD-OES), respectively. Hydrogen saturation was performed from hydrogen atmosphere at 673 IC temperature and 2 atm. pressure. It was found that hydrogen absorption rate by Zr-1Nb alloy decreased after PIII&D. The modified layers contained a mixing zone of titanium and zirconium, which decreases with increasing bias voltage. Hydrogenation causes the formation of titanium hydrides and lattice distortions of alpha-Zr at the low bias voltage that does not occur at higher bias voltages. The hydrogenation behavior of modified zirconium alloy was discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 9
页数:8
相关论文
共 44 条
[1]   Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review [J].
Anders, A .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :319-330
[2]   Plasma-based ion implantation utilising a cathodic arc plasma [J].
Bilek, MMM ;
McKenzie, DR ;
Tarrant, RN ;
Lim, SHM ;
McCulloch, DG .
SURFACE & COATINGS TECHNOLOGY, 2002, 156 (1-3) :136-142
[3]   ION-BEAM ASSISTED COATING AND SURFACE MODIFICATION WITH PLASMA SOURCE ION-IMPLANTATION [J].
CONRAD, JR ;
DODD, RA ;
HAN, S ;
MADAPURA, M ;
SCHEUER, J ;
SRIDHARAN, K ;
WORZALA, FJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (04) :3146-3151
[4]   PLASMA SOURCE ION-IMPLANTATION TECHNIQUE FOR SURFACE MODIFICATION OF MATERIALS [J].
CONRAD, JR ;
RADTKE, JL ;
DODD, RA ;
WORZALA, FJ ;
TRAN, NC .
JOURNAL OF APPLIED PHYSICS, 1987, 62 (11) :4591-4596
[5]   SURFACE MODIFICATION OF AUSTENITIC STAINLESS-STEEL BY TITANIUM ION-IMPLANTATION [J].
EVANS, PJ ;
HYVARINEN, J ;
SAMANDI, M .
SURFACE & COATINGS TECHNOLOGY, 1995, 71 (02) :151-158
[6]   Study of the kinetics of hydrogen sorption and desorption from titanium [J].
Evard, EA ;
Gabis, IE ;
Voyt, AP .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 404 :335-338
[7]   OXIDATION OF ION-IMPLANTED METALS [J].
GALERIE, A ;
CAILLET, M ;
PONS, M .
MATERIALS SCIENCE AND ENGINEERING, 1985, 69 (02) :329-340
[8]  
Huot J, 2002, NATO SCI SER II-MATH, V61, P109
[9]   SIMS and TEM investigation of hydrogen trapping on implantation defects in a nickel-based superalloy [J].
Jambon, Fanny ;
Marchetti, Loic ;
Sennour, Mohamed ;
Jomard, Francois ;
Chene, Jacques .
JOURNAL OF NUCLEAR MATERIALS, 2015, 466 :120-133
[10]   Influence of plasma immersion titanium implantation on hydrogenation and mechanical properties of Zr-2.5Nb [J].
Kashkarov, E. B. ;
Nikitenkov, N. N. ;
Syrtanov, M. S. ;
Sutygina, A. N. ;
Shulepov, I. A. ;
Lider, A. M. .
APPLIED SURFACE SCIENCE, 2016, 370 :142-148