Bounds for second order structure functions and energy spectrum in turbulence

被引:8
作者
Constantin, P [1 ]
Nie, Q
Tanveer, S
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1063/1.870086
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we derive upper bounds for the second order structure function as well as for the Littlewood-Paley energy spectrum - an average of the usual energy spectrum E(k). While the upper bound results are consistent with a Kolmogorov type dependence on wave number k, the bounds do not involve the usual dissipation rate epsilon. Instead the bounds involve a dissipative quantity <(epsilon)over cap> similar to epsilon but based on the L-3 average of del u. Numerical computations for a highly symmetric flaws with Taylor microscale Reynolds numbers up to R-lambda = 155 are found to be consistent with the proposition that a relation in the inertial regime of the type E(k) similar to (C) over cap<(epsilon)over cap>(2/3)k(-5/3) holds with constant (C) over cap. (C) 1999 American Institute of Physics. [S1070-6631(99)00308-6].
引用
收藏
页码:2251 / 2256
页数:6
相关论文
共 25 条
  • [1] ON THE SCALING OF 3-DIMENSIONAL HOMOGENEOUS AND ISOTROPIC TURBULENCE
    BENZI, R
    CILIBERTO, S
    BAUDET, C
    CHAVARRIA, GR
    [J]. PHYSICA D, 1995, 80 (04): : 385 - 398
  • [2] FINITE-TIME VORTEX SINGULARITY AND KOLMOGOROV SPECTRUM IN A SYMMETRICAL 3-DIMENSIONAL SPIRAL MODEL
    BHATTACHARJEE, A
    NG, CS
    WANG, XG
    [J]. PHYSICAL REVIEW E, 1995, 52 (05): : 5110 - 5123
  • [3] RECONNECTION IN ORTHOGONALLY INTERACTING VORTEX TUBES - DIRECT NUMERICAL SIMULATIONS AND QUANTIFICATIONS
    BORATAV, ON
    PELZ, RB
    ZABUSKY, NJ
    [J]. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (03): : 581 - 605
  • [4] DIRECT NUMERICAL-SIMULATION OF TRANSITION TO TURBULENCE FROM A HIGH-SYMMETRY INITIAL CONDITION
    BORATAV, ON
    PELZ, RB
    [J]. PHYSICS OF FLUIDS, 1994, 6 (08) : 2757 - 2784
  • [5] SCALING EXPONENTS IN FLUID TURBULENCE - SOME ANALYTIC RESULTS
    CONSTANTIN, P
    FEFFERMAN, C
    [J]. NONLINEARITY, 1994, 7 (01) : 41 - 57
  • [6] Scaling exponents for active scalars
    Constantin, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) : 571 - 595
  • [7] The Littlemood-Paley spectrum in two-dimensional turbulence
    Constantin, P
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1997, 9 (3-4) : 183 - 189
  • [8] CONSTANTIN P, 1985, MEMOIRS AM MATH SOC, V314
  • [9] Foias C., 1973, REND SEMIN MAT U PAD, V49, P9
  • [10] Foias C., 1972, REND SEMIN MAT U PAD, V48, P219