Sharp Lp-bounds for a Small Perturbation of Burkholder's Martingale Transform

被引:1
作者
Boros, Nicholas [1 ]
Janakiraman, Prabhu [1 ]
Volberg, Alexander [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
martingale; martingale transform; perturbation; Ahlfors-Beurling transform; Riesz transform; Bellman function; Monge-Ampere equation; INEQUALITIES;
D O I
10.1512/iumj.2012.61.4641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {d(k)}(k >= 0) be a complex martingale difference in L-p[0, 1], where 1 < p < infinity, and {epsilon(k)}(k >= 0) be a sequence in {+/- 1}. We obtain the following generalization of Burkholder's famous result. If tau is an element of [-1/2, 1/2] and n is an element of Z(+), then parallel to Sigma(n)(k=0) ((epsilon k)(tau))d(k)parallel to(Lp([0,1),C2)) <= ((p* - 1)(2) + tau(2))(1/2)parallel to Sigma(n)(k=0) d(k)parallel to(Lp([0,1),C)), where ((p* -1)(2) + tau(2))(1/2) is sharp and p* - 1 = max{p - 1, 1/(p - 1)}. For 2 <= p < infinity the result is also true with sharp constant for vertical bar tau vertical bar <= 1.
引用
收藏
页码:751 / 773
页数:23
相关论文
共 20 条