Temporal Hypergraph Attention Network for Silicon Content Prediction in Blast Furnace

被引:13
作者
Liu, Chengbao [1 ,2 ]
Tan, Jie [1 ,2 ]
Li, Jingwei [1 ,2 ]
Li, Yuan [1 ,2 ]
Wang, Huanjie [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Automation, Beijing 100190, Peoples R China
关键词
Attention mechanism; blast furnace; gated recurrent unit (GRU); multihypergraph; silicon content; FUNCTIONAL-LINK NETWORKS; MODELS;
D O I
10.1109/TIM.2022.3219475
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Online dynamic prediction of the hot metal silicon content in the blast furnace ironmaking process is crucial for stabilizing the furnace condition and improving the molten iron quality. However, due to the complex nonlinear correlations and time-varying time lags between silicon content and process variables, silicon content prediction is a challenging task. To tackle the problem, we propose a novel silicon content prediction method, called temporal hypergraph attention network (T-HyperGAT), which is combined the hypergraph attention network (HyperGAT) and the gated recurrent unit (GRU) network. Specifically, the HyperGAT is used to capture the high-order correlations of input features and perform equal-dimensional feature transformation to maintain the temporality of input features, and the GRU network is used to capture the time-series characteristics of transformed input features to overcome the time-varying time lags of process variables. Then, the T-HyperGAT model can capture high-order correlations and time-series characteristics from complex industrial data. The effectiveness of the proposed T-HyperGAT method is verified by actual blast furnace ironmaking process data from a blast furnace in China.
引用
收藏
页数:13
相关论文
共 43 条
  • [21] Fuzzy Classifier Design for Development Tendency of Hot Metal Silicon Content in Blast Furnace
    Li, Junpeng
    Hua, Changchun
    Yang, Yana
    Guan, Xinping
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (03) : 1115 - 1123
  • [22] Bayesian Block Structure Sparse Based T-S Fuzzy Modeling for Dynamic Prediction of Hot Metal Silicon Content in the Blast Furnace
    Li, Junpeng
    Hua, Changchun
    Yang, Yana
    Guan, Xinping
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (06) : 4933 - 4942
  • [23] [李温鹏 Li Wenpeng], 2020, [自动化学报, Acta Automatica Sinica], V46, P721
  • [24] Multi-Hypergraph Learning for Incomplete Multimodality Data
    Liu, Mingxia
    Gao, Yue
    Yap, Pew-Thian
    Shen, Dinggang
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (04) : 1197 - 1208
  • [25] Luo S. H., 2020, IEEE Access, V8, DOI [10.1109/ACCESS.2020.3034566, DOI 10.1109/ACCESS.2020.3034566]
  • [26] Meng Li, 2019, 2019 IEEE 5th International Conference on Computer and Communications (ICCC), P1862, DOI 10.1109/ICCC47050.2019.9064178
  • [27] IDENTIFICATION OF MULTIINPUT-MULTIOUTPUT TRANSFER FUNCTION AND NOISE MODEL OF A BLAST-FURNACE FROM CLOSED-LOOP DATA
    PHADKE, MS
    WU, SM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 944 - 951
  • [28] Detecting Novel Associations in Large Data Sets
    Reshef, David N.
    Reshef, Yakir A.
    Finucane, Hilary K.
    Grossman, Sharon R.
    McVean, Gilean
    Turnbaugh, Peter J.
    Lander, Eric S.
    Mitzenmacher, Michael
    Sabeti, Pardis C.
    [J]. SCIENCE, 2011, 334 (6062) : 1518 - 1524
  • [29] Data-Driven Time Discrete Models for Dynamic Prediction of the Hot Metal Silicon Content in the Blast Furnace-A Review
    Saxen, Henrik
    Gao, Chuanhou
    Gao, Zhiwei
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) : 2213 - 2225
  • [30] Model of hot Metal Silicon Content in Blast Furnace Based on Principal Component Analysis Application and Partial Least Square
    Shi Lin
    Li Zhi-ling
    Yu Tao
    Li Jiang-peng
    [J]. JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2011, 18 (10) : 13 - 16