Sensitivity bounds for interferometry with Ising Hamiltonians

被引:14
作者
Li, Yan [1 ,2 ]
Pezze, Luca [1 ,2 ,3 ,4 ]
Li, Weidong [1 ,2 ]
Smerzi, Augusto [1 ,2 ,3 ,4 ]
机构
[1] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Inst Theoret Phys, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Dept Phys, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China
[3] CNR, INO, QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy
[4] LENS, Largo Enrico Fermi 2, I-50125 Florence, Italy
基金
中国国家自然科学基金;
关键词
QUANTUM METROLOGY; LIMIT; ENTANGLEMENT;
D O I
10.1103/PhysRevA.99.022324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Sensitivity bounds for a generic interferometric phase estimation problem are the shot noise and the Heisenberg limits. The shot noise is the highest sensitivity that can be reached with separable states, while the Heisenberg limit is the ultimate bound in sensitivity which can be saturated with entangled states. The scaling of these bounds with the number of particles N entering the interferometer depends on the specific Hamiltonian governing the same interferometer. In typical cases, the Hamiltonian is linear, and the shot-noise and Heisenberg limits scale with N-1/2 and with N-1, respectively. With interferometers described by generic, nonlinear Hamiltonian, the scalings with the number of particles can be rather different. Here we study the shot-noise and Heisenberg limits of Ising-like Hamiltonians in the presence of longitudinal and transverse fields, both in the nearest-neighbor and in the fully connected spin interaction cases. We provide the explicit forms of the states saturating the shot-noise and Heisenberg limits. These results can be relevant not only for precision measurement purposes but also to characterize quantum phase transitions and, more generally, the witnessing of multipartite entanglement.
引用
收藏
页数:11
相关论文
共 51 条
[1]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/NPHYS2083, 10.1038/nphys2083]
[2]   Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit [J].
Appel, J. ;
Windpassinger, P. J. ;
Oblak, D. ;
Hoff, U. B. ;
Kjaergaard, N. ;
Polzik, E. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) :10960-10965
[3]   Nonlinear Quantum Metrology of Many-Body Open Systems [J].
Beau, M. ;
del Campo, A. .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)
[4]   Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates [J].
Berry, Dominic W. ;
Hall, Michael J. W. ;
Zwierz, Marcin ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2012, 86 (05)
[5]   Quantum-limited metrology with product states [J].
Boixo, Sergio ;
Datta, Animesh ;
Flammia, Steven T. ;
Shaji, Anil ;
Bagan, Emilio ;
Caves, Carlton M. .
PHYSICAL REVIEW A, 2008, 77 (01)
[6]   Generalized limits for single-parameter quantum estimation [J].
Boixo, Sergio ;
Flammia, Steven T. ;
Caves, Carlton M. ;
Geremia, J. M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[7]   Quantum metrology: Dynamics versus entanglement [J].
Boixo, Sergio ;
Datta, Animesh ;
Davis, Matthew J. ;
Flammia, Steven T. ;
Shaji, Anil ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[8]   Compressed quantum metrology for the Ising Hamiltonian [J].
Boyajian, W. L. ;
Skotiniotis, M. ;
Duer, W. ;
Kraus, B. .
PHYSICAL REVIEW A, 2016, 94 (06)
[9]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[10]   Deterministic Squeezed States with Collective Measurements and Feedback [J].
Cox, Kevin C. ;
Greve, Graham P. ;
Weiner, Joshua M. ;
Thompson, James K. .
PHYSICAL REVIEW LETTERS, 2016, 116 (09)