A Robust Image Registration Interface for Large Volume Brain Atlas

被引:34
|
作者
Ni, Hong [1 ,2 ]
Tan, Chaozhen [1 ,2 ]
Feng, Zhao [1 ,2 ]
Chen, Shangbin [1 ,2 ]
Zhang, Zoutao [1 ,2 ]
Li, Wenwei [1 ,2 ]
Guan, Yue [1 ,2 ]
Gong, Hui [1 ,2 ,3 ]
Luo, Qingming [1 ,2 ]
Li, Anan [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Britton Chance Ctr Biomed Photon, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Engn Sci, MoE Key Lab Biomed Photon, Wuhan, Peoples R China
[3] JITRI Inst Brainsmat, HUST Suzhou Inst Brainsmat, Suzhou, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院;
关键词
RESOLUTION; PERFORMANCE; TOMOGRAPHY; LANDMARKS; FRAMEWORK;
D O I
10.1038/s41598-020-59042-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurately mapping brain structures in three-dimensions is critical for an in-depth understanding of brain functions. Using the brain atlas as a hub, mapping detected datasets into a standard brain space enables efficient use of various datasets. However, because of the heterogeneous and nonuniform brain structure characteristics at the cellular level introduced by recently developed high-resolution whole-brain microscopy techniques, it is difficult to apply a single standard to robust registration of various large-volume datasets. In this study, we propose a robust Brain Spatial Mapping Interface (BrainsMapi) to address the registration of large-volume datasets by introducing extracted anatomically invariant regional features and a large-volume data transformation method. By performing validation on model data and biological images, BrainsMapi achieves accurate registration on intramodal, individual, and multimodality datasets and can also complete the registration of large-volume datasets (approximately 20 TB) within 1 day. In addition, it can register and integrate unregistered vectorized datasets into a common brain space. BrainsMapi will facilitate the comparison, reuse and integration of a variety of brain datasets.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Indirect Image Registration with Large Diffeomorphic Deformations
    Chen, Chong
    Oktem, Ozan
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (01): : 575 - 617
  • [2] An extension of digital volume correlation for multimodality image registration
    Tudisco, E.
    Jailin, C.
    Mendoza, A.
    Tengattini, A.
    Ando, E.
    Hall, Stephen A.
    Viggiani, Gioacchino
    Hild, F.
    Roux, S.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [3] Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas
    Casamitjana, Adria
    Lorenzi, Marco
    Ferraris, Sebastiano
    Peter, Loic
    Modat, Marc
    Stevens, Allison
    Fischl, Bruce
    Vercauteren, Tom
    Iglesias, Juan Eugenio
    MEDICAL IMAGE ANALYSIS, 2022, 75
  • [4] Robust point matching method for multimodal retinal image registration
    Wang, Gang
    Wang, Zhicheng
    Chen, Yufei
    Zhao, Weidong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 19 : 68 - 76
  • [5] DeepSlice: rapid fully automatic registration of mouse brain imaging to a volumetric atlas
    Carey, Harry
    Pegios, Michael
    Martin, Lewis
    Saleeba, Chris
    Turner, Anita J.
    Everett, Nicholas A.
    Bjerke, Ingvild E.
    Puchades, Maja A.
    Bjaalie, Jan G.
    Mcmullan, Simon
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] 3D MRI image super-resolution for brain combining rigid and large diffeomorphic registration
    Liang, Zifei
    He, Xiaohai
    Teng, Qizhi
    Wu, Dan
    Qing, Lingbo
    IET IMAGE PROCESSING, 2017, 11 (12) : 1291 - 1301
  • [7] An Integrated Method for Large Deformable Registration of Brain Images
    Yu, Pengcheng
    Li, Yao
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3672 - 3675
  • [8] Image-to-Volume Deformable Registration by Learning Displacement Vector Fields
    Miura, Ryuto
    Nakamura, Mitsuhiro
    Nakao, Megumi
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2025, 9 (01) : 69 - 82
  • [9] Towards a 4D Spatio-Temporal Atlas of the Embryonic and Fetal Brain Using a Deep Learning Approach for Groupwise Image Registration
    Bastiaansen, Wietske A. P.
    Rousian, Melek
    Steegers-Theunissen, Regime P. M.
    Niessen, Wiro J.
    Koning, Anton H. J.
    Klein, Stefan
    BIOMEDICAL IMAGE REGISTRATION (WBIR 2022), 2022, 13386 : 29 - 34
  • [10] A robust deformable image registration enhancement method based on radial basis function
    Liang, Xiao
    Yin, Fang-Fang
    Wang, Chunhao
    Cai, Jing
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2019, 9 (07) : 1315 - 1325