Chaos synchronization of the Chua system with a fractional order

被引:193
作者
Li, CP [1 ]
Deng, WH
Xu, D
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[3] Nanyang Technol Univ, Div Engn Mech, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
关键词
synchronization; fractional order; Chua system;
D O I
10.1016/j.physa.2005.06.078
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaos synchronization of two identical Chua systems with the same fractional order is studied by utilizing the Pecora-Carroll (PC) method, the active-passive decomposition (PAD) method, the one-way coupling method and the bidirectional coupling one. The sufficient conditions for achieving synchronization between these two systems are derived via the Laplace transformation theory. Numerical simulations show the effectiveness of the theoretical analyses. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 21 条
[1]  
ARENA P, 1997, P ECCTD BUD, P1259
[2]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[3]  
Butzer P., 2000, An Introduction to Fractional Calculus
[4]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[5]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[6]   Chaos synchronization of the fractional Lu system [J].
Deng, WH ;
Li, CP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) :61-72
[7]   Synchronization of chaotic fractional Chen system [J].
Deng, WH ;
Li, CP .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (06) :1645-1648
[8]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[9]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[10]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490