Robust and Powerful Tests for Rare Variants Using Fisher's Method to Combine Evidence of Association From Two or More Complementary Tests

被引:66
作者
Derkach, Andriy [2 ]
Lawless, Jerry F. [1 ,3 ]
Sun, Lei [1 ,2 ]
机构
[1] Univ Toronto, Dalla Lana Sch Publ Hlth, Div Biostat, Toronto, ON M5T 3M7, Canada
[2] Univ Toronto, Dept Stat, Toronto, ON M5T 3M7, Canada
[3] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
robust methods; Fisher's method; rare variants; complex traits; next-generation sequencing; 1000 genome project; DISEASE ASSOCIATION; COMMON DISEASES; SEQUENCING DATA;
D O I
10.1002/gepi.21689
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Many association tests have been proposed for rare variants, but the choice of a powerful test is uncertain when there is limited information on the underlying genetic model. Proposed methods use either linear statistics, which are powerful when most variants are causal and have the same direction of effect, or quadratic statistics, which are more powerful in other scenarios. To achieve robustness, it is natural to combine the evidence of association from two or more complementary tests. To this end, we consider the minimum-p and Fisher's methods of combining P-values from linear and quadratic statistics. Extensive simulation studies show that both methods are robust across models with varying proportions of causal, deleterious, and protective rare variants, allele frequencies, and effect sizes. When the majority (>75%) of the causal effects are in the same direction (deleterious or protective), Fisher's method consistently outperforms the minimum-p and the individual linear and quadratic tests, as well as the optimal sequence kernel association test, SKAT-O. When the individual test has moderate power, Fisher's test has improved power for 90% of the 5000 models considered, with >20% relative efficiency gain for 40% of the models. The maximum absolute power loss is 8% for the remaining 10% of the models. An application to the GAW17 quantitative trait Q2 data based on sequence data of the 1000 Genomes Project shows that, compared with linear and quadratic tests, Fisher's test has comparable power for all 13 functional genes and provides the best power for more than half of them.
引用
收藏
页码:110 / 121
页数:12
相关论文
共 26 条
  • [21] KARL PEARSON'S META-ANALYSIS REVISITED
    Owen, Art B.
    [J]. ANNALS OF STATISTICS, 2009, 37 (6B) : 3867 - 3892
  • [22] Pooled Association Tests for Rare Variants in Exon-Resequencing Studies
    Price, Alkes L.
    Kryukov, Gregory V.
    de Bakker, Paul I. W.
    Purcell, Shaun M.
    Staples, Jeff
    Wei, Lee-Jen
    Sunyaev, Shamil R.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (06) : 832 - 838
  • [23] Stouffer S.A., 1949, AM SOLDIER COMBAT IT
  • [24] Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17
    Tintle, Nathan
    Aschard, Hugues
    Hu, Inchi
    Nock, Nora
    Wang, Haitian
    Pugh, Elizabeth
    [J]. GENETIC EPIDEMIOLOGY, 2011, 35 : S56 - S60
  • [25] Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test
    Wu, Michael C.
    Lee, Seunggeun
    Cai, Tianxi
    Li, Yun
    Boehnke, Michael
    Lin, Xihong
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (01) : 82 - 93
  • [26] Bayesian Analysis of Rare Variants in Genetic Association Studies
    Yi, Nengjun
    Zhi, Degui
    [J]. GENETIC EPIDEMIOLOGY, 2011, 35 (01) : 57 - 69