Persistence codebooks for topological data analysis

被引:8
作者
Zielinski, Bartosz [1 ]
Lipinski, Michal [1 ]
Juda, Mateusz [1 ]
Zeppelzauer, Matthias [2 ]
Dlotko, Pawel [3 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci & Comp Math, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
[2] St Polten Univ Appl Sci, Media Comp Grp, Inst Creat Media Technol, Matthias Corvinus Str 15, A-3100 St Polten, Austria
[3] Polish Acad Sci, Dioscuri Ctr Topol Data Anal, Inst Math, Jana & Jedrzeja Sniadeckich 8, PL-00656 Warsaw, Poland
关键词
Persistent homology; Machine learning; Persistence diagrams; Bag of words; VLAD; Fisher vectors; HOMOLOGY;
D O I
10.1007/s10462-020-09897-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Persistent homology is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs) which are 2D multisets of points. Their variable size makes them, however, difficult to combine with typical machine learning workflows. In this paper we introduce persistence codebooks, a novel expressive and discriminative fixed-size vectorized representation of PDs that adapts to the inherent sparsity of persistence diagrams. To this end, we adapt bag-of-words, vectors of locally aggregated descriptors and Fischer vectors for the quantization of PDs. Persistence codebooks represent PDs in a convenient way for machine learning and statistical analysis and have a number of favorable practical and theoretical properties including 1-Wasserstein stability. We evaluate the presented representations on several heterogeneous datasets and show their (high) discriminative power. Our approach yields comparable-and partly even higher-performance in much less time than alternative approaches.
引用
收藏
页码:1969 / 2009
页数:41
相关论文
共 50 条
[31]   Topological Data Analysis for Classification of DeepSat-4 Dataset [J].
Moghadam, Mehdi Hosseini ;
Pedram, Mir Mohsen .
2020 10TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2020, :246-250
[32]   Application of topological data analysis to flood disaster management in Nigeria [J].
Ohanuba, Felix Obi ;
Ismail, Mohd Tahir ;
Ali, Majid Khan Majahar .
ENVIRONMENTAL ENGINEERING RESEARCH, 2023, 28 (05)
[33]   Identification of Autism Spectrum Disorder Using Topological Data Analysis [J].
Zhang, Xudong ;
Gao, Yaru ;
Zhang, Yunge ;
Li, Fengling ;
Li, Huanjie ;
Lei, Fengchun .
JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (03) :1023-1037
[34]   giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration [J].
Tauzin, Guillaume ;
Lupo, Umberto ;
Tunstall, Lewis ;
Perez, Julian Burella ;
Caorsi, Matteo ;
Medina-Mardones, Anibal M. ;
Dassatti, Alberto ;
Hess, Kathryn .
JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
[35]   Bump hunting by topological data analysis [J].
Sommerfeld, Max ;
Heo, Giseon ;
Kim, Peter ;
Rush, Stephen T. ;
Marron, J. S. .
STAT, 2017, 6 (01) :462-471
[36]   Event history and topological data analysis [J].
Garside, K. ;
Gjoka, A. ;
Henderson, R. ;
Johnson, H. ;
Makarenko, I .
BIOMETRIKA, 2021, 108 (04) :757-773
[37]   Data structures and algorithms for topological analysis [J].
Cane, Jean-Marc ;
Tzoumas, George M. ;
Michelucci, Dominique ;
Hidalgo, Marta ;
Foufou, Sebti .
2014 SCIENCE AND INFORMATION CONFERENCE (SAI), 2014, :302-312
[38]   A Topological Data Analysis of the Protein Structure [J].
Lamine, Zakaria ;
Mamouni, My Ismail ;
Mansouri, Mohammed Wadia .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
[39]   Applications of Topological Data Analysis in Oncology [J].
Bukkuri, Anuraag ;
Andor, Noemi ;
Darcy, Isabel K. .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
[40]   Differentially Private Topological Data Analysis [J].
Kang, Taegyu ;
Kim, Sehwan ;
Sohn, Jinwon ;
Awan, Jordan .
JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25