Dynamic data science and official statistics

被引:5
作者
Thompson, Mary E. [1 ]
机构
[1] Univ Waterloo, Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2018年 / 46卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Combining data sources; Dimension reduction; large-scale data; recursive methods; visualization; CROP YIELD; BIG DATA; MODEL; REGULARIZATION; DESIGN;
D O I
10.1002/cjs.11322
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Many of the challenges and opportunities of data science have to do with dynamic factors: a growing volume of administrative and commercial data on individuals and establishments, continuous flows of data and the capacity to analyze and summarize them in real time, and the necessity for resources to maintain them. With its emphasis on data quality and supportable results, the practice of Official Statistics faces a variety of statistical and data science issues. This article discusses the importance of population frames and their maintenance; the potential for use of multi-frame methods and linkages; how the use of large scale non-survey data may shape the objects of inference; the complexity of models for large data sets; the importance of recursive methods and regularization; and the benefits of sophisticated spatial visualization tools in capturing spatial variation and temporal change. The Canadian Journal of Statistics 46: 10-23; 2018 (c) 2017 Statistical Society of Canada
引用
收藏
页码:10 / 23
页数:14
相关论文
共 50 条
  • [1] Big data in official statistics
    Zwick, Markus
    BUNDESGESUNDHEITSBLATT-GESUNDHEITSFORSCHUNG-GESUNDHEITSSCHUTZ, 2015, 58 (08) : 838 - 843
  • [2] Official statistics and Big Data
    Struijs, Peter
    Braaksma, Barteld
    Daas, Piet J. H.
    BIG DATA & SOCIETY, 2014, 1 (01):
  • [3] Big Data and Official Statistics†
    Abraham, Katharine G.
    REVIEW OF INCOME AND WEALTH, 2022, 68 (04) : 835 - 861
  • [4] Official Statistics and Big Data
    Giczi, Johanna
    Szoke, Katalin
    INTERSECTIONS-EAST EUROPEAN JOURNAL OF SOCIETY AND POLITICS, 2018, 4 (01): : 159 - 182
  • [5] Data mining for official statistics Challenges and opportunities
    Buelens, Bart
    Daas, Piet
    van den Brakel, Jan
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 915 - 915
  • [6] Trusted Smart Statistics: How new data will change official statistics
    Ricciato, Fabio
    Wirthmann, Albrecht
    Hahn, Martina
    DATA & POLICY, 2020, 2
  • [7] BIG DATA: POTENTIAL, CHALLENGES, AND IMPLICATIONS IN OFFICIAL STATISTICS
    Elezaj, Ogerta
    Tole, Dhimitri
    CBU INTERNATIONAL CONFERENCE PROCEEDINGS 2018: INNOVATIONS IN SCIENCE AND EDUCATION, 2018, 6 : 95 - 99
  • [8] Statistics, data science, and big data
    Kauermann G.
    Küchenhoff H.
    AStA Wirtschafts- und Sozialstatistisches Archiv, 2016, 10 (2-3) : 141 - 150
  • [9] Data science, big data and statistics
    Galeano, Pedro
    Pena, Daniel
    TEST, 2019, 28 (02) : 289 - 329
  • [10] Social media as a data source for official statistics; the Dutch Consumer Confidence Index
    van den Brakel, Jan
    Sohler, Emily
    Daas, Piet
    Buelens, Bart
    SURVEY METHODOLOGY, 2017, 43 (02) : 183 - 210