Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries

被引:140
|
作者
Raghaven, Prasanth [1 ,2 ]
Choi, Jae-Won [1 ,2 ]
Ahn, Jou-Hyeon [1 ,2 ]
Cheruvally, Gouri [1 ,2 ]
Chauhan, Ghanshyam S. [1 ,2 ]
Ahn, Hyo-Jun [2 ,3 ]
Nah, Changwoon [4 ]
机构
[1] Gyeongsang Natl Univ, Dept Chem & Biol Engn, Jinju 660701, South Korea
[2] Gyeongsang Natl Univ, Engn Res Inst, Jinju 660701, South Korea
[3] Gyeongsang Natl Univ, Sch Nano & Adv Mat Engn, Jinju 660701, South Korea
[4] Chonbuk Natl Univ, Dept Polymer Nano Sci & Technol, Jeonju 561756, South Korea
关键词
Polymer electrolyte; Electrospinning; Lithium batteries; Fibrous membrane; In situ SiO2;
D O I
10.1016/j.jpowsour.2008.03.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite membranes of poly(vinylidene fluoride-co-hexafluoropropylene) {P(VdF-HFP)} and different composition of silica have been prepared by electrospinning polymer solution containing in situ generated silica. These membranes are made up of fibers of 1-2 mu m diameters. These fibers are stacked in layers to produce fully interconnected pores that results in high porosity. Polymer electrolytes were prepared by immobilizing 1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) in the membranes. The composite membranes exhibit a high electrolyte uptake of 550-600%. The optimum electrochemical properties have been observed for the polymer electrolyte containing 6% in situ silica to show ionic conductivity of 8.06 mS cm(-1) at 20 degrees C, electrolyte retention ratio of 0.85, anodic stability up to 4.6V versus Li/Li+, and a good compatibility with lithium metal resulting in low interfacial resistance. A first cycle specific capacity of 170 mAh g(-1) was obtained when the polymer electrolyte was evaluated in a Li/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 degrees C, corresponding to 100% utilization of the cathode material. The properties of composite membrane prepared with in situ silica were observed to be comparatively better than the one prepared by direct addition of silica. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:437 / 443
页数:7
相关论文
共 50 条
  • [1] Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries
    Li, Xin
    Cheruvally, Gouri
    Kim, Jae-Kwang
    Choi, Jae-Won
    Ahn, Jou-Hyeon
    Kim, Ki-Won
    Ahn, Hyo-Jun
    JOURNAL OF POWER SOURCES, 2007, 167 (02) : 491 - 498
  • [2] Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries
    Raghavan, Prasanth
    Zhao, Xiaohui
    Shin, Chorong
    Baek, Dong-Ho
    Choi, Jae-Won
    Manuel, James
    Heo, Min-Yeong
    Ahn, Jou-Hyeon
    Nah, Changwoon
    JOURNAL OF POWER SOURCES, 2010, 195 (18) : 6088 - 6094
  • [3] Polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous membranes containing polymer plasticizers for lithium batteries
    Lim, Du-Hyun
    Manuel, James
    Ahn, Jou-Hyeon
    Kim, Jae-Kwang
    Jacobsson, Per
    Matic, Alexsandar
    Ha, Jong Keun
    Cho, Kwon Koo
    Kim, Ki-Won
    SOLID STATE IONICS, 2012, 225 : 631 - 635
  • [4] Poly(vinylidene fluoride)-polydiphenylamine composite electrospun membrane as high-performance polymer electrolyte for lithium batteries
    Gopalan, Anantha Iyengar
    Lee, Kwang-Pill
    Manesh, Kalayil Manian
    Santhosh, Padmanabhan
    JOURNAL OF MEMBRANE SCIENCE, 2008, 318 (1-2) : 422 - 428
  • [5] Characterization of the polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(vinyl pyrrolidone) for lithium ion battery
    Wang, ZL
    Tang, ZY
    MATERIALS CHEMISTRY AND PHYSICS, 2003, 82 (01) : 16 - 20
  • [6] A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries
    Peng, Xiuxiang
    Zhou, Ling
    Jing, Bo
    Cao, Qi
    Wang, Xianyou
    Tang, Xiaoli
    Zeng, Juan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (01) : 255 - 262
  • [7] A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries
    Xiuxiang Peng
    Ling Zhou
    Bo Jing
    Qi Cao
    Xianyou Wang
    Xiaoli Tang
    Juan Zeng
    Journal of Solid State Electrochemistry, 2016, 20 : 255 - 262
  • [8] An amorphous poly(vinylidene fluoride-co-hexafluoropropylene) based gel polymer electrolyte for magnesium ion battery
    Singh, Rupali
    Janakiraman, S.
    Agrawal, Ashutosh
    Ghosh, Sudipto
    Venimadhav, A.
    Biswas, K.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 858 (858)
  • [9] High Performance of Electrospun Poly(Vinylidene Fluoride-co-Hexafluoropropylene)/Reduced Graphene Oxide Polyelectrolytes for Lithium-Ion Batteries
    Parveen, J. Shahitha
    Ali, S. A. Muhammed
    Banu, R. Daulath
    Thirumurugan, M.
    JOURNAL OF ELECTRONIC MATERIALS, 2025, 54 (03) : 1998 - 2008
  • [10] High-performance poly(vinylidene fluoride-co-hexafluoropropylene) based electrospun polyelectrolyte mat for lithium-ion battery
    Jakriya, Shahitha Parveen
    Syed, Abdul Majeed
    Pillai, Sindhu Krishna
    Rahim, Daulath Banu
    MATERIALS EXPRESS, 2018, 8 (01) : 77 - 84