On double Hurwitz numbers with completed cycles

被引:29
|
作者
Shadrin, S. [1 ]
Spitz, L. [1 ]
Zvonkine, D. [2 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2012年 / 86卷
关键词
TRANSITIVE FACTORIZATIONS; GEOMETRY; CURVES;
D O I
10.1112/jlms/jds010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we collect a number of facts about double Hurwitz numbers, where the simple branch points are replaced by their more general analogues: completed (r+1)-cycles. In particular, we give a geometric interpretation of these generalized Hurwitz numbers and derive a cut-and-join operator for completed (r+1)-cycles. We also prove a strong piecewise polynomiality property in the sense of Goulden-Jackson-Vakil. In addition, we propose a conjectural ELSV/GJV-type formula, that is, an expression in terms of some intrinsic combinatorial constants that might be related to the intersection theory of some analogues of the moduli space of curves. The structure of these conjectural 'intersection numbers' is discussed in detail.
引用
收藏
页码:407 / 432
页数:26
相关论文
共 41 条
  • [31] Polynomiality of Hurwitz numbers, Bouchard-Marino conjecture, and a new proof of the ELSV formula
    Dunin-Barkowski, P.
    Kazarian, M.
    Orantin, N.
    Shadrin, S.
    Spitz, L.
    ADVANCES IN MATHEMATICS, 2015, 279 : 67 - 103
  • [32] Logarithmic Gromov-Witten theory and double ramification cycles
    Ranganathan, Dhruv
    Kumaran, Ajith Urundolil
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (809): : 1 - 40
  • [33] The Laplace Transform of the Cut-and-Join Equation and the Bouchard-Marino Conjecture on Hurwitz Numbers
    Eynard, Bertrand
    Mulase, Motohico
    Safnuk, Bradley
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (02) : 629 - 670
  • [34] Double Ramification Cycles and Integrable Hierarchies
    Buryak, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (03) : 1085 - 1107
  • [35] Non-orientable branched coverings, b-Hurwitz numbers, and positivity for multiparametric Jack expansions
    Chapuy, Guillaume
    Dolega, Maciej
    ADVANCES IN MATHEMATICS, 2022, 409
  • [36] b-Monotone Hurwitz Numbers: Virasoro Constraints, BKP Hierarchy, and O(N)-BGW Integral
    Bonzom, Valentin
    Chapuy, Guillaume
    Dolega, Maciej
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) : 12172 - 12230
  • [37] The tensor Harish-Chandra-Itzykson-Zuber integral I: Weingarten calculus and a generalization of monotone Hurwitz numbers
    Collins, Benoit
    Gurau, Razvan
    Lionni, Luca
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (05) : 1851 - 1897
  • [38] DOUBLE RAMIFICATION CYCLES ON THE MODULI SPACES OF CURVES
    Janda, F.
    Pandharipande, R.
    Pixton, A.
    Zvonkine, D.
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 125 (01): : 221 - 266
  • [39] INTEGRALS OF ψ-CLASSES OVER DOUBLE RAMIFICATION CYCLES
    Buryak, A.
    Shadrin, S.
    Spitz, L.
    Zvonkine, D.
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (03) : 699 - 737
  • [40] Stable tree expressions with Omega-classes and double ramification cycles
    Blot, Xavier
    Lewanski, Danilo
    Rossi, Paolo
    Shadrin, Sergei
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 209