On double Hurwitz numbers with completed cycles

被引:29
|
作者
Shadrin, S. [1 ]
Spitz, L. [1 ]
Zvonkine, D. [2 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2012年 / 86卷
关键词
TRANSITIVE FACTORIZATIONS; GEOMETRY; CURVES;
D O I
10.1112/jlms/jds010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we collect a number of facts about double Hurwitz numbers, where the simple branch points are replaced by their more general analogues: completed (r+1)-cycles. In particular, we give a geometric interpretation of these generalized Hurwitz numbers and derive a cut-and-join operator for completed (r+1)-cycles. We also prove a strong piecewise polynomiality property in the sense of Goulden-Jackson-Vakil. In addition, we propose a conjectural ELSV/GJV-type formula, that is, an expression in terms of some intrinsic combinatorial constants that might be related to the intersection theory of some analogues of the moduli space of curves. The structure of these conjectural 'intersection numbers' is discussed in detail.
引用
收藏
页码:407 / 432
页数:26
相关论文
共 41 条
  • [21] Weighted Hurwitz numbers and hypergeometric τ-functions: an overview
    Hamad, J.
    STRING-MATH 2014, 2016, 93 : 289 - +
  • [22] Orbifold Hurwitz numbers and Eynard-Orantin invariants
    Do, Norman
    Leigh, Oliver
    Norbury, Paul
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (05) : 1281 - 1327
  • [23] VIRASORO CONSTRAINTS AND HURWITZ NUMBERS THROUGH ASYMPTOTIC ANALYSIS
    Kim, Yon-Seo
    Liu, Kefeng
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 241 (02) : 275 - 284
  • [24] Laguerre Ensemble: Correlators, Hurwitz Numbers and Hodge Integrals
    Gisonni, Massimo
    Grava, Tamara
    Ruzza, Giulio
    ANNALES HENRI POINCARE, 2020, 21 (10): : 3285 - 3339
  • [25] Hurwitz numbers for reflection groups III: Uniform formulae
    Douvropoulos, Theo
    Lewis, Joel Brewster
    Morales, Alejandro H.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [26] Hurwitz theory and the double ramification cycle
    Cavalieri, Renzo
    JAPANESE JOURNAL OF MATHEMATICS, 2016, 11 (02): : 305 - 331
  • [27] On ELSV-type formulae, Hurwitz numbers and topological recursion
    Lewanski, D.
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 517 - 532
  • [28] SOME 4-POINT HURWITZ NUMBERS IN POSITIVE CHARACTERISTIC
    Bouw, Irene I.
    Osserman, Brian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6685 - 6711
  • [29] Equivalence of ELSV and Bouchard-Mario conjectures for -spin Hurwitz numbers
    Shadrin, S.
    Spitz, L.
    Zvonkine, D.
    MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 611 - 645
  • [30] Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected (n, m)-Point Functions, and Double Hurwitz Numbers
    Wang, Zhiyuan
    Yang, Chenglang
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19