On double Hurwitz numbers with completed cycles

被引:29
|
作者
Shadrin, S. [1 ]
Spitz, L. [1 ]
Zvonkine, D. [2 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2012年 / 86卷
关键词
TRANSITIVE FACTORIZATIONS; GEOMETRY; CURVES;
D O I
10.1112/jlms/jds010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we collect a number of facts about double Hurwitz numbers, where the simple branch points are replaced by their more general analogues: completed (r+1)-cycles. In particular, we give a geometric interpretation of these generalized Hurwitz numbers and derive a cut-and-join operator for completed (r+1)-cycles. We also prove a strong piecewise polynomiality property in the sense of Goulden-Jackson-Vakil. In addition, we propose a conjectural ELSV/GJV-type formula, that is, an expression in terms of some intrinsic combinatorial constants that might be related to the intersection theory of some analogues of the moduli space of curves. The structure of these conjectural 'intersection numbers' is discussed in detail.
引用
收藏
页码:407 / 432
页数:26
相关论文
共 41 条
  • [2] Asymptotics for real monotone double Hurwitz numbers
    Ding, Yanqiao
    He, Qinhao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [3] Generalized string equations for double Hurwitz numbers
    Takasaki, Kanehisa
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) : 1135 - 1156
  • [4] Geometric Perspective on Piecewise Polynomiality of Double Hurwitz Numbers
    Cavalieri, Renzo
    Marcus, Steffen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 749 - 764
  • [5] Combinatorics of tropical Hurwitz cycles
    Hampe, Simon
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 1027 - 1058
  • [6] On the Goulden-Jackson-Vakil conjecture for double Hurwitz numbers
    Do, Norman
    Lewanski, Danilo
    ADVANCES IN MATHEMATICS, 2022, 403
  • [7] Double Hurwitz numbers: polynomiality, topological recursion and intersection theory
    Borot, Gaetan
    Do, Norman
    Karev, Maksim
    Lewanski, Danilo
    Moskovsky, Ellena
    MATHEMATISCHE ANNALEN, 2023, 387 (1-2) : 179 - 243
  • [8] The Combinatorics of Real Double Hurwitz Numbers with Real Positive Branch Points
    Guay-Paquet, Mathieu
    Markwig, Hannah
    Rau, Johannes
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (01) : 258 - 293
  • [9] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265
  • [10] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522