Machine Learning Techniques and Drug Design

被引:126
|
作者
Gertrudes, J. C. [2 ]
Maltarollo, V. G. [3 ]
Silva, R. A. [2 ]
Oliveira, P. R. [2 ]
Honorio, K. M. [2 ,3 ]
da Silva, A. B. F. [1 ]
机构
[1] Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, Brazil
[3] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Machine learning; drug design; QSAR; medicinal chemistry; ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR MACHINES; PARTIAL LEAST-SQUARES; SELF-ORGANIZING MAPS; QSAR MODELS; GENETIC ALGORITHM; IN-VITRO; ELECTROTOPOLOGICAL STATE; PROTEASE INHIBITORS; PREDICTION;
D O I
10.2174/092986712802884259
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The interest in the application of machine learning techniques (MLT) as drug design tools is growing in the last decades. The reason for this is related to the fact that the drug design is very complex and requires the use of hybrid techniques. A brief review of some MLT such as self-organizing maps, multilayer perceptron, bayesian neural networks, counter-propagation neural network and support vector machines is described in this paper. A comparison between the performance of the described methods and some classical statistical methods (such as partial least squares and multiple linear regression) shows that MLT have significant advantages. Nowadays, the number of studies in medicinal chemistry that employ these techniques has considerably increased, in particular the use of support vector machines. The state of the art and the future trends of MLT applications encompass the use of these techniques to construct more reliable QSAR models. The models obtained from MLT can be used in virtual screening studies as well as filters to develop/discovery new chemicals. An important challenge in the drug design field is the prediction of pharmacokinetic and toxicity properties, which can avoid failures in the clinical phases. Therefore, this review provides a critical point of view on the main MLT and shows their potential ability as a valuable tool in drug design.
引用
收藏
页码:4289 / 4297
页数:9
相关论文
共 50 条
  • [31] Machine Learning Techniques Applied to the Study of Drug Transporters
    Kong, Xiaorui
    Lin, Kexin
    Wu, Gaolei
    Tao, Xufeng
    Zhai, Xiaohan
    Lv, Linlin
    Dong, Deshi
    Zhu, Yanna
    Yang, Shilei
    MOLECULES, 2023, 28 (16):
  • [32] A review on the design and optimization of antennas using machine learning algorithms and techniques
    El Misilmani, Hilal M.
    Naous, Tarek
    Al Khatib, Salwa K.
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2020, 30 (10)
  • [33] Application of artificial intelligence and machine learning methods in drug discovery and development
    Naranjo-Castaneda, Carlos
    Coello-Coello, Carlos A.
    Juaristi, Eusebio
    ARKIVOC, 2024,
  • [34] Machine learning techniques for sequential learning engineering design optimisation
    Humphrey, L. R.
    Dubas, A. J.
    Fletcher, L. C.
    Davis, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (02)
  • [35] The Experimentalist's Guide to Machine Learning for Small Molecule Design
    Lindley, Sarah E.
    Lu, Yiyang
    Shukla, Diwakar
    ACS APPLIED BIO MATERIALS, 2023, 7 (02) : 657 - 684
  • [36] In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
    Yang, Hongbin
    Sun, Lixia
    Li, Weihua
    Liu, Guixia
    Tang, Yun
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [37] New Perspectives on Machine Learning in Drug Discovery
    Musella, Simona
    Verna, Giulio
    Fasano, Alessio
    Di Micco, Simone
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (32) : 6703 - 6726
  • [38] In Silico Machine Learning Methods in Drug Development
    Dobchev, Dimitar A.
    Pillai, Girinath G.
    Karelson, Mati
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2014, 14 (16) : 1913 - 1922
  • [39] Machine learning directed drug formulation development
    Bannigan, Pauric
    Aldeghi, Matteo
    Bao, Zeqing
    Hase, Florian
    Aspuru-Guzik, Alan
    Allen, Christine
    ADVANCED DRUG DELIVERY REVIEWS, 2021, 175
  • [40] Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques
    Uguz, Sinan
    Ipek, Osman
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (05) : 1393 - 1417