机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, BrazilUniv Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, BrazilUniv Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil
Silva, R. A.
[2
]
Oliveira, P. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, BrazilUniv Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil
Oliveira, P. R.
[2
]
Honorio, K. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, Brazil
Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Santo Andre, SP, BrazilUniv Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil
The interest in the application of machine learning techniques (MLT) as drug design tools is growing in the last decades. The reason for this is related to the fact that the drug design is very complex and requires the use of hybrid techniques. A brief review of some MLT such as self-organizing maps, multilayer perceptron, bayesian neural networks, counter-propagation neural network and support vector machines is described in this paper. A comparison between the performance of the described methods and some classical statistical methods (such as partial least squares and multiple linear regression) shows that MLT have significant advantages. Nowadays, the number of studies in medicinal chemistry that employ these techniques has considerably increased, in particular the use of support vector machines. The state of the art and the future trends of MLT applications encompass the use of these techniques to construct more reliable QSAR models. The models obtained from MLT can be used in virtual screening studies as well as filters to develop/discovery new chemicals. An important challenge in the drug design field is the prediction of pharmacokinetic and toxicity properties, which can avoid failures in the clinical phases. Therefore, this review provides a critical point of view on the main MLT and shows their potential ability as a valuable tool in drug design.
机构:
Tampere Univ, Fac Med & Hlth Technol, Tampere 33520, Finland
Tampere Univ, BioMEdiTech Inst, Tampere 33520, FinlandNovaMechanics Ltd, Dept ChemoInformat, CY-1046 Nicosia, Cyprus
Serra, Angela
Fratello, Michele
论文数: 0引用数: 0
h-index: 0
机构:
Tampere Univ, Fac Med & Hlth Technol, Tampere 33520, Finland
Tampere Univ, BioMEdiTech Inst, Tampere 33520, FinlandNovaMechanics Ltd, Dept ChemoInformat, CY-1046 Nicosia, Cyprus
机构:
Pontifical Catholic Univ Rio Grande Sul PUCRS, Sch Hlth & Life Sci, Av Ipiranga 6681, P-90619900 Porto Alegre, RS, BrazilPontifical Catholic Univ Rio Grande Sul PUCRS, Sch Hlth & Life Sci, Av Ipiranga 6681, P-90619900 Porto Alegre, RS, Brazil
机构:
Univ Carlos III Madrid, Santander Big Data Inst, Getafe 28903, SpainUniv Carlos III Madrid, Santander Big Data Inst, Getafe 28903, Spain
Cifuentes, Jenny
论文数: 引用数:
h-index:
机构:
Marulanda, Geovanny
Bello, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Comillas Pontifical Univ, Inst Res Technol IIT, ICAI Sch Engn, Madrid 28015, SpainUniv Carlos III Madrid, Santander Big Data Inst, Getafe 28903, Spain
Bello, Antonio
Reneses, Javier
论文数: 0引用数: 0
h-index: 0
机构:
Comillas Pontifical Univ, Inst Res Technol IIT, ICAI Sch Engn, Madrid 28015, SpainUniv Carlos III Madrid, Santander Big Data Inst, Getafe 28903, Spain
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Sao Paulo, BrazilUniv Fed Minas Gerais UFMG, Inst Ciencias Biol, Dept Microbiol, Belo Horizonte, MG, Brazil