On COVID-19 outbreaks predictions: Issues on stability, parameter sensitivity, and precision

被引:7
作者
Stehlik, M. [1 ,2 ,3 ]
Kiselak, J. [4 ]
Dinamarca, M. Alejandro [5 ]
Li, Y. [6 ]
Ying, Y. [6 ]
机构
[1] Johannes Kepler Univ Linz, Linz Inst Technol, Linz, Austria
[2] Johannes Kepler Univ Linz, Dept Appl Stat, Linz, Austria
[3] Univ Valparaiso, Dept Stat, Valparaiso, Chile
[4] Safarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
[5] Univ Valparaiso, Fac Farm, Escuela Nutr & Dietet, Ctr Microbioinnovac, Valparaiso, Chile
[6] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA USA
关键词
COVID-19; outbreaks; exponential growth model; SIR model; prediction; sensitivity;
D O I
10.1080/07362994.2020.1802291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate ill-posedness of inverse problems of estimation and prediction of Coronavirus Disease 2019 (COVID-19) outbreaks from statistical and mathematical perspectives. This is by nature a stochastic problem, since e.g., random perturbation in parameters can cause instability of estimation and prediction. This leaves us with a plenty of possible statistical regularizations, thus generating a plethora of sub-problems. We can mention as examples stability and sensitivity of peak estimation, starting point of exponential growth curve, or estimation of parameters of SIR (Susceptible-Infected-Removed) model. Moreover, each parameter has its specific sensitivity, and naturally, the most sensitive parameter deserves a special attention. E.g., in SIR model, parameter beta is more sensitive than parameter gamma. In a simple exponential epidemic growth model, parameterbis more sensitive than the parametera. We also discuss on statistical quality of COVID-19 incidence prediction, where we justify an exponential curve considering the microbial growth in ideal conditions for epidemic. The empirical data from Iowa State, USA, Hubei Province in China, New York State, USA, and Chile justifies an exponential growth curve for initiation of epidemics outbreaks.
引用
收藏
页码:383 / 404
页数:22
相关论文
共 13 条
[1]  
Dhama K, 2020, CLIN MICROBIOL REV, V33, DOI [10.1128/CMR.00028-20, 10.1038/s41432-020-0088-4]
[2]  
Engl H.W., 1996, Regularization of Inverse Problems, DOI DOI 10.1007/978-94-009-1740-8
[3]  
Guan WJ, 2020, NEW ENGL J MED, V382, P1861, DOI 10.1056/NEJMc2005203
[4]  
Hadamard J., 1902, Sur les problemes aux derivees partielles et leur signification physique, V13, P49
[5]   COVID-19: faecal-oral transmission? [J].
Hindson, Jordan .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (05) :259-259
[6]  
Kree P., 1995, LECT NOTES PHYS, V451
[7]   Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence [J].
Liu, Junli ;
Peng, Baoyang ;
Zhang, Tailei .
APPLIED MATHEMATICS LETTERS, 2015, 39 :60-66
[8]  
Medve M., 1992, FUNDAMENTALS DYNAMIC
[9]  
Saltelli A., 2000, Sensitivity Analysis, V1st
[10]   Fredholm integral relation between compound estimation and prediction (FIRCEP) [J].
Stehlik, M. ;
Kisel'ak, J. ;
Bukina, E. ;
Lu, Y. ;
Baran, S. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (03) :427-459