On least-squares identification of stochastic linear systems with noisy input-output data

被引:0
作者
Zheng, WX [1 ]
机构
[1] Univ Western Sydney Nepean, Sch Sci, Sydney, NSW 2747, Australia
关键词
noisy input-output systems; identification; parameter estimation; least-squares method; unbiased estimators;
D O I
10.1002/(SICI)1099-1115(199905)13:3<131::AID-ACS535>3.3.CO;2-S
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a recent paper, two least-squares (LS) based methods, which do not involve prefiltering of noisy measurements or parameter extraction, are established for unbiased identification of linear noisy input-output systems. This paper introduces more computationally efficient estimation schemes for the measurement noise variances and develops a new version of two LS based algorithms in combination with the bias correction technique. The proposed two algorithms work directly with the underlying noisy system, thereby being substantially different from the previous methods that need to actually identify an augmented system. It is shown that a significant saving in the computational cost can be achieved by this better way of implementation of the two LS-based algorithms while at almost no sacrifice of the parameter estimation accuracy. The performance of the proposed two identification algorithms and comparisons with their predecessors are substantiated using simulation data. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 12 条
[1]  
Davis M. H. A., 1985, STOCHASTIC MODELLING, DOI 10.1007/978-94-009-4828-0
[2]   LINEAR DYNAMIC ERRORS-IN-VARIABLES MODELS - SOME STRUCTURE-THEORY [J].
DEISTLER, M ;
ANDERSON, BDO .
JOURNAL OF ECONOMETRICS, 1989, 41 (01) :39-63
[3]   IDENTIFICATION OF LINEAR-SYSTEMS WITH INPUT AND OUTPUT NOISE - THE KOOPMANS-LEVIN METHOD [J].
FERNANDO, KV ;
NICHOLSON, H .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1985, 132 (01) :30-36
[4]  
Granger CWJ, 1986, FORECASTING EC TIME
[5]   ROBUST PARAMETRIC TRANSFER-FUNCTION ESTIMATION USING COMPLEX LOGARITHMIC FREQUENCY-RESPONSE DATA [J].
GUILLAUME, P ;
PINTELON, R ;
SCHOUKENS, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (07) :1180-1190
[6]  
Haykin S., 1991, ADAPTIVE FILTER THEO
[7]  
Schoukens J., 1991, IDENTIFICATION LINEA
[8]   IDENTIFICATION OF STOCHASTIC LINEAR-SYSTEMS IN PRESENCE OF INPUT NOISE [J].
SODERSTROM, T .
AUTOMATICA, 1981, 17 (05) :713-725
[9]   COMBINED INSTRUMENTAL VARIABLE AND SUBSPACE FITTING APPROACH TO PARAMETER-ESTIMATION OF NOISY INPUT-OUTPUT SYSTEMS [J].
STOICA, P ;
CEDERVALL, M ;
ERIKSSON, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (10) :2386-2397
[10]  
Zheng WX, 1998, INT J ADAPT CONTROL, V12, P365, DOI 10.1002/(SICI)1099-1115(199806)12:4<365::AID-ACS496>3.0.CO