On compactness of commutators of multiplication and bilinear pseudodifferential operators and a new subspace of BMO

被引:24
作者
Torres, Rodolfo H. [1 ,2 ]
Xue, Qingying [3 ]
机构
[1] Univ Kansas, Dept Math, 1460 Jayhawk Blvd, Lawrence, KS 66045 USA
[2] Univ Calif Riverside, Univ Off Bldg,Suite 200, Riverside, CA 92521 USA
[3] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
Calderon-Zygmund theory; singular integrals; commutators; bilinear operators; compact operators; bounded mean oscillation; CMO; VMO; HARDY SPACES; BOUNDEDNESS;
D O I
10.4171/RMI/1156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the compactness of the commutators of point-wise multiplication with bilinear homogeneous Calderon-Zygmund operators acting on product of Lebesgue spaces is characterized by the multiplying function being in the space CMO. This space is the closure in BMO of its subspace of smooth functions with compact support. It is shown in this work that for bilinear Calderon-Zygmund operators arising from smooth (inhomogeneous) bilinear Fourier multipliers or bilinear pseudo-differential operators, one can actually consider multiplying functions in a new subspace of BMO larger than CMO.
引用
收藏
页码:939 / 956
页数:18
相关论文
共 23 条
[1]  
[Anonymous], 1978, TOHOKU MATH J
[2]   Symbolic calculus and the transposes of bilinear pseudodifferential operators [J].
Bényi, A ;
Torres, RH .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1161-1181
[3]  
Bényi A, 2013, P AM MATH SOC, V141, P3609
[4]   On the Hormander Classes of Bilinear Pseudodifferential Operators [J].
Benyi, Arpad ;
Maldonado, Diego ;
Naibo, Virginia ;
Torres, Rodolfo H. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (03) :341-364
[5]   Remarks on some subspaces of BMO(Rn) and of bmo(Rn) [J].
Bourdaud, G .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (04) :1187-+
[6]   CHARACTERIZATION OF COMPACTNESS OF COMMUTATORS OF BILINEAR SINGULAR INTEGRAL OPERATORS [J].
Chaffee, Lucas ;
Chen, Peng ;
Han, Yanchang ;
Torres, Rodolfo H. ;
Ward, Lesley A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (09) :3943-3953
[7]  
Coifman R., 1978, Ann. Inst. Fourier (Grenoble), V28, P177
[8]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[9]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[10]   COMPACTNESS OF COMMUTATORS OF MULTIPLICATIONS AND CONVOLUTIONS, AND BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS [J].
CORDES, HO .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 18 (02) :115-131