STABILITY OF A NON-LOCAL KINETIC MODEL FOR CELL MIGRATION WITH DENSITY DEPENDENT ORIENTATION BIAS

被引:5
作者
Loy, Nadia [1 ]
Preziosi, Luigi [1 ]
机构
[1] Politecn Torino, Dept Math Sci GL Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Kinetic model; non-linear Bolztmann equation; non-local interactions; stability analysis; cell migration; pattern formation; ADHESION; CHEMOTAXIS; EXISTENCE; PATTERNS;
D O I
10.3934/krm.2020035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the article is to study the stability of a non-local kinetic model proposed in [17], that is a kinetic model for cell migration taking into account the non-local sensing performed by a cell in order to decide its direction and speed of movement. We show that pattern formation results from modulation of one non-dimensional parameter that depends on the tumbling frequency, the sensing radius, the mean speed in a given direction, the uniform configuration density and the tactic response to the cell density. Numerical simulations show that our linear stability analysis predicts quite precisely the ranges of parameters determining instability and pattern formation. We also extend the stability analysis to the case of different mean speeds in different directions.
引用
收藏
页码:1007 / 1027
页数:21
相关论文
共 27 条
[1]   A continuum approach to modelling cell-cell adhesion [J].
Armstrong, Nicola J. ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 243 (01) :98-113
[2]   Non-local Parabolic and Hyperbolic Models for Cell Polarisation in Heterogeneous Cancer Cell Populations [J].
Bitsouni, Vasiliki ;
Eftimie, Raluca .
BULLETIN OF MATHEMATICAL BIOLOGY, 2018, 80 (10) :2600-2632
[3]  
Buttenschon A., 2018, THESIS
[4]   A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis [J].
Buttenschon, Andreas ;
Hillen, Thomas ;
Gerisch, Alf ;
Painter, Kevin J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (1-2) :429-456
[5]   NON-LOCAL KINETIC AND MACROSCOPIC MODELS FOR SELF-ORGANISED ANIMAL AGGREGATIONS [J].
Carrillo, Jose A. ;
Eftimie, Raluca ;
Hoffmann, Franca .
KINETIC AND RELATED MODELS, 2015, 8 (03) :413-441
[6]   Coherent modelling switch between pointwise and distributed representations of cell aggregates [J].
Colombi, A. ;
Scianna, M. ;
Preziosi, L. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (04) :783-808
[7]   Differentiated cell behavior: a multiscale approach using measure theory [J].
Colombi, Annachiara ;
Scianna, Marco ;
Tosin, Andrea .
JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (05) :1049-1079
[8]   Modeling group formation and activity patterns in self-organizing collectives of individuals [J].
Eftimie, R. ;
de Vries, G. ;
Lewis, M. A. ;
Lutscher, F. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (05) :1537-1565
[9]   Complex spatial group patterns result from different animal communication mechanisms [J].
Eftimie, R. ;
de Vries, G. ;
Lewis, M. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (17) :6974-6979
[10]   Pattern formation in a nonlocal mathematical model for the multiple roles of the TGF-β pathway in tumour dynamics [J].
Eftimie, Raluca ;
Perez, Matthieu ;
Buono, Pietro-Luciano .
MATHEMATICAL BIOSCIENCES, 2017, 289 :96-115