Evaluation of Novel Soft Computing Methods for the Prediction of the Dental Milling Time-Error Parameter

被引:0
作者
Kroemer, Pavel [1 ,2 ]
Novosad, Tomas [1 ]
Snasel, Vaclav [1 ,2 ]
Vera, Vicente [4 ]
Hernando, Beatriz [4 ]
Garcia-Hernandez, Laura [7 ]
Quintian, Hector [3 ]
Corchado, Emilio [2 ,3 ]
Redondo, Raquel [5 ]
Sedano, Javier [6 ]
Garcia, Alvaro E. [4 ]
机构
[1] VSB Tech Univ Ostrava, Dept Comp Sci, Ostrava, Czech Republic
[2] IT4Innovat, Ostrava, Czech Republic
[3] Univ Salamanca, Dept Informat & Automat, Salamanca, Spain
[4] UCM, Fac Odontol, Madrid, Spain
[5] Univ Burgos, Dept Civil Engn, Burgos, Spain
[6] Castilla & Leon Technol Inst, Dept AI & Appl Elect, Burgos, Spain
[7] Univ Cordoba, Area Project Engn, Cordoba, Spain
来源
SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS | 2013年 / 188卷
关键词
soft computing; dental milling; prediction; evolutionary algorithms; flexible neural trees; fuzzy rules; industrial applications;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This multidisciplinary study presents the application of two well known soft computing methods flexible neural trees, and evolutionary fuzzy rules for the prediction of the error parameter between real dental milling time and forecast given by the dental milling machine. In this study a real data set obtained by a dynamic machining center with five axes simultaneously is analyzed to empirically test the novel system in order to optimize the time error.
引用
收藏
页码:163 / +
页数:3
相关论文
共 39 条
[21]   Prediction Market Index by Combining Financial Time-Series Forecasting and Sentiment Analysis Using Soft Computing [J].
Saini, Dinesh Kumar ;
Zia, Kashif ;
Abusham, Eimad .
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2019, 800 :180-187
[22]   Evaluation of Soft Computing Methods for Estimating Tangential Young Modulus of Intact Rock Based on Statistical Performance Indices [J].
Koken, Ekin ;
Kadakci Koca, Tumay .
GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2022, 40 (07) :3619-3631
[23]   Innovative prediction models for the frost durability of recycled aggregate concrete using soft computing methods [J].
Liu, Kaihua ;
Zou, Chaoying ;
Zhang, Xiaocun ;
Yan, Jiachuan .
JOURNAL OF BUILDING ENGINEERING, 2021, 34
[24]   Drought prediction using hybrid soft-computing methods for semi-arid region [J].
Basakin, Eyyup Ensar ;
Ekmekcioglu, Omer ;
Ozger, Mehmet .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2021, 7 (04) :2363-2371
[25]   Drought prediction using hybrid soft-computing methods for semi-arid region [J].
Eyyup Ensar Başakın ;
Ömer Ekmekcioğlu ;
Mehmet Özger .
Modeling Earth Systems and Environment, 2021, 7 :2363-2371
[26]   Prediction of Asphalt Pavement Responses from FWD Surface Deflections Using Soft Computing Methods [J].
Li, Maoyun ;
Wang, Hao .
JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2018, 144 (02)
[27]   Reliability Evaluation of Dynamic Characteristics of Clean Sand Soils Based on Soft Computing Methods [J].
Umu, Seyfettin U. ;
Onur, Mehmet I. ;
Okur, Volkan ;
Tuncan, Mustafa ;
Tuncan, Ahmet .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (04) :1363-1373
[28]   Appraisal of soft computing methods for short term consumers' heat load prediction in district heating systems [J].
Protic, Milan ;
Shamshirband, Shahaboddin ;
Anisi, Mohammad Hossein ;
Petkovic, Dalibor ;
Mitic, Dragan ;
Raos, Miomir ;
Arif, Muhammad ;
Alam, Khubaib Amjad .
ENERGY, 2015, 82 :697-704
[29]   A novel approach based on soft computing techniques for unconfined compression strength prediction of soil cement mixtures [J].
Tinoco, Joaquim ;
Alberto, Antonio ;
da Venda, Paulo ;
Correia, Antonio Gomes ;
Lemos, Luis .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (13) :8985-8991
[30]   A novel approach based on soft computing techniques for unconfined compression strength prediction of soil cement mixtures [J].
Joaquim Tinoco ;
António Alberto ;
Paulo da Venda ;
António Gomes Correia ;
Luís Lemos .
Neural Computing and Applications, 2020, 32 :8985-8991