Evaluation of Novel Soft Computing Methods for the Prediction of the Dental Milling Time-Error Parameter

被引:0
|
作者
Kroemer, Pavel [1 ,2 ]
Novosad, Tomas [1 ]
Snasel, Vaclav [1 ,2 ]
Vera, Vicente [4 ]
Hernando, Beatriz [4 ]
Garcia-Hernandez, Laura [7 ]
Quintian, Hector [3 ]
Corchado, Emilio [2 ,3 ]
Redondo, Raquel [5 ]
Sedano, Javier [6 ]
Garcia, Alvaro E. [4 ]
机构
[1] VSB Tech Univ Ostrava, Dept Comp Sci, Ostrava, Czech Republic
[2] IT4Innovat, Ostrava, Czech Republic
[3] Univ Salamanca, Dept Informat & Automat, Salamanca, Spain
[4] UCM, Fac Odontol, Madrid, Spain
[5] Univ Burgos, Dept Civil Engn, Burgos, Spain
[6] Castilla & Leon Technol Inst, Dept AI & Appl Elect, Burgos, Spain
[7] Univ Cordoba, Area Project Engn, Cordoba, Spain
来源
SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS | 2013年 / 188卷
关键词
soft computing; dental milling; prediction; evolutionary algorithms; flexible neural trees; fuzzy rules; industrial applications;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This multidisciplinary study presents the application of two well known soft computing methods flexible neural trees, and evolutionary fuzzy rules for the prediction of the error parameter between real dental milling time and forecast given by the dental milling machine. In this study a real data set obtained by a dynamic machining center with five axes simultaneously is analyzed to empirically test the novel system in order to optimize the time error.
引用
收藏
页码:163 / +
页数:3
相关论文
共 39 条
  • [1] Applying soft computing techniques to optimise a dental milling process
    Vera, Vicente
    Corchado, Emilio
    Redondo, Raquel
    Sedano, Javier
    Garcia, Alvaro E.
    NEUROCOMPUTING, 2013, 109 : 94 - 104
  • [2] Soft computing methods for the prediction of protein tertiary structures: A survey
    Marquez-Chamorro, Alfonso E.
    Asencio-Cortes, Gualberto
    Santiesteban-Toca, Cosme E.
    Aguilar-Ruiz, Jesus S.
    APPLIED SOFT COMPUTING, 2015, 35 : 398 - 410
  • [3] Soft Computing Methods for Disulfide Connectivity Prediction
    Marquez-Chamorro, Alfonso E.
    Aguilar-Ruiz, Jesus S.
    EVOLUTIONARY BIOINFORMATICS, 2015, 11 : 223 - 229
  • [4] Evaluation of several soft computing methods in monthly evapotranspiration modelling
    Gavili, Siavash
    Sanikhani, Hadi
    Kisi, Ozgur
    Mahmoudi, Mohammad Hasan
    METEOROLOGICAL APPLICATIONS, 2018, 25 (01) : 128 - 138
  • [5] Automatic Injection Profile Prediction by Soft Computing Methods
    Wei Mingzhen
    Sung, Andrew H.
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2006, 2 (01): : 68 - 73
  • [6] A novel soft computing method for engine RUL prediction
    Singh, Sandip Kumar
    Kumar, Sandeep
    Dwivedi, J. P.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (04) : 4065 - 4087
  • [7] A novel soft computing method for engine RUL prediction
    Sandip Kumar Singh
    Sandeep Kumar
    J. P. Dwivedi
    Multimedia Tools and Applications, 2019, 78 : 4065 - 4087
  • [8] Evaluation of Soft Computing Methods for Parameters Estimation and Sensitivity Analysis of Laser Cutting
    Milovancevic, M.
    Deneva, H.
    Lazov, L.
    Nikolic, V.
    Petkovic, D.
    LASERS IN ENGINEERING, 2018, 40 (1-3) : 191 - 201
  • [9] Prediction of rainfall time series using soft computing techniques
    Barkha Chaplot
    Environmental Monitoring and Assessment, 2021, 193
  • [10] Prediction of rainfall time series using soft computing techniques
    Chaplot, Barkha
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (11)