Ultrasonic Wave Dispersion Characteristics of Fluid-Filled Single-Walled Carbon Nanotubes Based on Nonclassical Shell Model

被引:6
作者
Narendar, S. [1 ]
Gopalakrishnan, S. [2 ]
机构
[1] Def Res & Dev Lab, Hyderabad 500058, Andhra Pradesh, India
[2] Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India
关键词
Carbon Nanotube; Nonlocal Elasticity; Wavenumber; Cut-Off Frequency; Dispersion; Phase Speed; DYNAMICS; WATER; FLOW;
D O I
10.1166/asl.2011.1877
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, ultrasonic wave propagation analysis in fluid filled single-walled carbon nanotube (SWCNT) is studied using nonlocal elasticity theory. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. The fluid inside the SWCNT is assumed as water. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The presence of fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and wave velocity are smaller in presence of fluid as compared to the empty SWCNT. The nonlocal elasticity calculation shows that the wavenumber tends to reach the continuum limit at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. It has been shown that the circumferential. waves will propagate non-dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the cut-off frequency depend on the nonlocal scaling parameter and also on the density of the fluid inside the SWCNT, and the axial wavenumber, as the fluid becomes denser the cut-off frequency decreases. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTS filled with water is also discussed.
引用
收藏
页码:3480 / 3485
页数:6
相关论文
共 15 条