Unraveling the 13C NMR Chemical Shifts in Single-Walled Carbon Nanotubes: Dependence on Diameter and Electronic Structure

被引:16
作者
Engtrakul, Chaiwat [1 ]
Irurzun, Veronica M. [2 ]
Gjersing, Erica L. [1 ]
Holt, Josh M. [1 ]
Larsen, Brian A. [1 ]
Resasco, Daniel E. [2 ]
Blackburn, Jeffrey L. [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Oklahoma, Sarkeys Energy Ctr, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA
关键词
DENSITY DIFFERENTIATION; SEPARATION; RAMAN; DISPROPORTIONATION; RECOGNITION; COMPOSITES; CATALYSTS; SWNTS; CO;
D O I
10.1021/ja211181q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the non-covalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT C-13 chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of C-13 labeling and density gradient ultracentrifugation (DGU) to produce an array of C-13-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic C-13 chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the C-13 chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.
引用
收藏
页码:4850 / 4856
页数:7
相关论文
共 38 条
[1]   Structural properties of carbon nanotubes derived from 13C NMR [J].
Abou-Hamad, E. ;
Babaa, M. -R. ;
Bouhrara, M. ;
Kim, Y. ;
Saih, Y. ;
Dennler, S. ;
Mauri, F. ;
Basset, J. -M. ;
Goze-Bac, C. ;
Wagberg, T. .
PHYSICAL REVIEW B, 2011, 84 (16)
[2]   Solid-state NMR analysis of fluorinated single-walled carbon nanotubes: Assessing the extent of fluorination [J].
Alemany, Lawrence B. ;
Zhang, Lei ;
Zeng, Liling ;
Edwards, Christopher L. ;
Barron, Andrew R. .
CHEMISTRY OF MATERIALS, 2007, 19 (04) :735-744
[3]   Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co-Mo catalysts [J].
Alvarez, WE ;
Pompeo, F ;
Herrera, JE ;
Balzano, L ;
Resasco, DE .
CHEMISTRY OF MATERIALS, 2002, 14 (04) :1853-1858
[4]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[5]   FULLERENE ISOMERISM - ISOLATION OF C2-NU-C78 AND D3-C78 [J].
DIEDERICH, F ;
WHETTEN, RL ;
THILGEN, C ;
ETTL, R ;
CHAO, I ;
ALVAREZ, MM .
SCIENCE, 1991, 254 (5039) :1768-1770
[6]  
Dillon AC, 1999, ADV MATER, V11, P1354, DOI 10.1002/(SICI)1521-4095(199911)11:16<1354::AID-ADMA1354>3.0.CO
[7]  
2-N
[8]   Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution [J].
Doorn, SK ;
Heller, DA ;
Barone, PW ;
Usrey, ML ;
Strano, MS .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 78 (08) :1147-1155
[9]   Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies [J].
Engtrakul, C ;
Davis, MF ;
Gennett, T ;
Dillon, AC ;
Jones, KM ;
Heben, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (49) :17548-17555
[10]   Solid-State 13C NMR Assignment of Carbon Resonances on Metallic and Semiconducting Single-Walled Carbon Nanotubes [J].
Engtrakul, Chaiwat ;
Davis, Mark F. ;
Mistry, Kevin ;
Larsen, Brian A. ;
Dillon, Anne C. ;
Heben, Michael J. ;
Blackburn, Jeffrey L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (29) :9956-9957